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Abstract

This paper describes the Core and Periphery technique: a quantitative method for
exploring areality that uses a naive Bayes classifier, a statistical tool for inferring class
membership based on training sets assembled from members of the classes in ques-
tion. The Core and Periphery technique is applied to the exploration of phonological
areality in the Andes and surrounding lowland regions, based on the South American
Phonological Inventory Database (SAPhon 1.1.3; Michael et al., 2013). Evidence is found
for a phonological area centering on the Andean highlands, and extending to parts of
the northern and central Andean foothills regions, the Chaco, and Patagonia. Evidence
is also found for Southern and North-Central phonological sub-areas within this larger
phonological area.
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1 Introduction

The goals of this paper are twofold: first, to describe the Core and Periphery
technique, an intuitively appealing quantitative method for exploring large
linguistic datasets for evidence of linguistic areality; and second, to illustrate
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the utility of this technique by applying it to a dataset of South American
phonological inventories, focusing on the evidence of phonological areality in
the Andes and surrounding lowland areas.

Core and Periphery is amethod that uses as a starting point linguists’ knowl-
edge of the languages and history of a region to generate initial hypotheses
regarding ‘cores’: sets of languages that constitute possible linguistic areas
(Campbell et al., 1986; Thomason, 2000; Muysken, 2008), or parts of such areas.
These hypotheses serve as the seed for the application of a statistical technique,
naive Bayes classification (nbc), which determines what features, if any, dis-
tinguish the core languages from other languages in the region, and also to
what degree languages outside the proposed core resemble the core languages.
Those languages deemed core-like, together with the proposed core, constitute
a candidate linguistic area, to be evaluated against pertinent sociohistorical
and geographical facts. If the languages deemed core-like fail to make sense
geographically, then the Core and Periphery technique has failed to identify a
linguistic area around the proposed core.

The Core and Periphery technique improves on conventional practices of
‘eyeballing’ areas in three ways. First, it provides a quantitative evaluation
of the degree to which the languages of a proposed area in fact exhibit fea-
tures that distinguish them from the languages of the larger region contain-
ing the proposed area. Second, it provides a quantitative measure of simi-
larity between languages that can be applied to large datasets, allowing lin-
guists to locate unexpected similarities that help identify new areas or rede-
fine accepted ones. And third, quantitative measures of similarity also make
it possible to visualize and cogently discuss the structure of linguistic areas
whose boundaries are gradient in nature. Note, however, that Core and Periph-
ery is not strictly speaking a statistical test of areality, a point we return to in
Section6.

In this paper, we carry out two different Core and Periphery explorations
of phonological areality in the circum-Andean region, first treating the entire
Andean highlands from northern Chile to northern Ecuador as a single core,
and then treating the Andean highlands as consisting of two cores, a Southern
Andean core and a North-Central Andean core. The dividing line between the
latter two cores runs through the southern Peruvian Andes, grouping Cuzco-
Collao Quechua and Jaqaru with the Southern Andean core, while the remain-
ingQuechuan languages constitute theNorth-Central core. This dual core anal-
ysis is motivated by the qualitative observation that the Southern Andean lan-
guages, delimited in this way, share a number of phonological characteristics
otherwise rare in SouthAmerica, including a three-way contrast betweenplain,
aspirated, and ejective stops.
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The single core analysis reveals several clusters of languages in the Andean
foothills and adjacent lowland regions that pattern more strongly with the
languages of the Andean core than other lowland languages, including an
Ecuadorean Andean foothills cluster, a Huallaga River valley cluster, a cluster
of Arawak languages of the southern Peruvian Andean foothills, and a cluster
of Chacoan and Patagonian languages. These results support the existence
of a large South American phonological area that encompasses the Andean
highlands and parts of the Andean foothills regions, with a tongue that extends
from the Southern Andes into the Chaco and Patagonia.

The dual core analysis builds on the single core analysis by revealing a
finer structure to this area, showing that the non-Andean languages which
exhibit similarity to Andean languages generally resemble those of the core to
which they aremost proximally located. The relevant Chacoan and Patagonian
languages resemble those of the Southern core, and the relevant languages of
Peru and Ecuador resemble those of the North-Central core.

This paper is organized as follows: Section 2 presents a qualitative overview
of the Core and Periphery technique, and Section 3 presents the data to which
this technique is applied, as well as the overall goals of the analysis. A more
technical description of the statisticalmethod underlying the Core and Periph-
ery technique, the naive Bayes classifer, is provided in Section 4, with addi-
tional details provided in Appendix b.1–b.3. The results of single and dual
core analyses are presented and examined in Section 5, and Section 6 eval-
uates the Core and Periphery technique, discussing its strengths and weak-
nesses.

2 The Core and Periphery Technique: A Qualitative Overview

The basic strategy for exploring phonological areality implemented by the
Core and Periphery technique is to use a measure of inter-language similarity
to bootstrap from a given set of geographically clustered and phonologically
similar languages (the ‘proposed core’) to a larger set of similar languages
(the ‘core and periphery’) that are deemed to form a quantitatively consistent
linguistic area.

In a one-core analysis, the first step is to divide the languages of a region
(South America, in our case) into three sets: a proposed core, a control class,
and an equivocal class. The proposed core is a set of languages that are
hypothesized to form a part of a larger linguistic area. The control set con-
sists of languages that are unlikely to have been in contact with the core lan-
guages, and are therefore deemed unlikely to belong to the core or periphery ex
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hypothesi.1 The equivocal class is the one about which nothing is claimed in
advance.

Motivations for choosing a proposed core may include ethnographic or
historical observations that suggest the existence of a culture area, intuitions
regarding areality based on ‘eyeballing’ the linguistic data, or even previous
proposals that the core constitutes a linguistic area. As will become clear,
the original rationale for selecting a particular core is unimportant for the
operation of the quantitative analysis described below, since the results of
that analysis will indicate whether the proposed core does in fact constitute
a distinctive and homogeneous sub-area of a larger linguistic area.

Choosing the control class entails identifying a set of languages that are
unlikely to have been influenced by contact with the core languages. The
ultimate choice of non-core or ‘control’ languages depends a great deal on the
analyst’s knowledge of the history and geography of the region, but we have
generally allowed the possibility of quite distant linguistic influence, leading
us to select control regions that are remote from the cores. In the case of the
single Andean core that we discuss in Section 5.1, for example, we define the
control languages as consisting of all languages further than 1500 kilometers
from the Andean core.2

After determining the three sets (core, control, and equivocal), a naive Bayes
classifier is trained on the proposed core and the control class. These two
classes serve to exemplify the opposite ends of an axis along which the clas-
sifier will then score the languages, including, again, those from the proposed
core and the control class. The highest-scoring languages constitute a refined
hypothesis for a linguistic core, which likely includes most or all of the pro-
posed core, providing it was well chosen to begin with. At the opposite end of
the spectrum, there will be languages with very low scores, most of which will
be non-core languages, if the proposed core was well chosen. Finally, in some
analyses such as ours, there will be languages with intermediate scores that are
geographically clustered near the proposed core. These constitute the periph-
ery.

1 As one reviewer suggested, even languages on another continent could serve as control
languages.

2 The Core and Periphery results actually suggest that in most cases, the range of phonological
influence of the Andes into the surrounding lowlands does not exceed a few hundred kilo-
meters, but by choosing so distant a control class, we allow for the possibility of more distant
influence.
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With the nbc analysis complete, the final step of the Core and Periphery
technique is to evaluate whether the peripheral languages with relatively high
nbc scores were ever plausibly involved in a donor relationship with core
languages, in light of available geographical, ethnohistorical, and archeological
data. If such a relationship is plausible, we attribute the high nbc score to
‘linguistic admixture,’ i.e. the diffusion of linguistic features between one or
more of the core languages and the high-scoring peripheral language, with the
result that it exhibits amixture of core andnon-core features. If the distribution
of high-scoring languages makes no sense geographically or otherwise, then
Core and Periphery essentially fails to support the proposed linguistic area.
Note that even when Core and Periphery is successful, the probabilistic nature
of nbc, and the limitations of using phonological inventories as evidence for
contact, may yield ‘false positives,’ i.e. languages that exhibit high nbc scores
despite there being no plausible basis for contact between those languages and
core languages. Such languages should be discarded, leaving a phonological
area that is defensible both quantitatively and qualitatively.

A two-core analysis, in contrast, produces a four-way division of languages
(Core 1, Core 2, the control class, and the equivocal class). The naive Bayes clas-
sifier is trainedoneachcore and the control set, anda three-way classification is
then performed, yielding three scores for each language of the equivocal class,
which indicate similarity to each of the cores and to the control class. Those
languages that obtain high scores for either of the two cores are then evaluated
for plausibly having been in contact with a core language.

3 Dataset and Analytical Goals

3.1 SAPhon
The quantitative exploration of phonological areality presented in this paper
is based on the analysis of the phonological inventories found in the South
AmericanPhonological InventoryDatabase, version 1.1.3 (SAPhon 1.1.3;Michael
et al., 2013).3 In this section we briefly describe the structure of the database,
and discuss particular decisions that we made in populating the database and
preparing it for quantitative analysis.

SAPhon 1.1.3 incorporates 359 phonological inventories that have been har-
vested frompublished sources, or contributedby linguists currentlyworkingon
the languages in question. This represents over 95% coverage of South Amer-

3 Available online: http://linguistics.berkeley.edu/~saphon

http://linguistics.berkeley.edu/~saphon
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ican languages for which phonological descriptions are known to exist in one
form or another.4 The vast majority of inventories in the SAPhon database
belong to living languages, but SAPhon also includes inventories from recently
extinct languages, such asChamicuro (Parker, 1991), aswell as inventories based
on the careful interpretation and re-analysis of older resources, as in the case
of Cholón (Alexander-Bakkerus, 2005).

To facilitate quantitative analysis, the phonological inventory of each lan-
guage is coded in a comprehensive phonological feature matrix, with lan-
guages along the y-axis and features along the x-axis,5 with a column for every
phonemeandcontrastive supersegmental feature (e.g. nasal harmony) attested
in a South American language. Each phonological inventory is coded as a row
of ones and zeros in the table, where the presence of a given segment for a
given language is coded as 1 in the appropriate column, and absence coded
as 0. Exhaustively coding the inventories in this fashion relieves us of having to
decide in advance which segments or contrasts are relevant to the exploration
of areality.6

We now turn to a number of methodological and analytical issues posed
by the nature of the data on which SAPhon is based. Since SAPhon draws
data from a considerable range of published and unpublished sources, issues
of heterogeneity in those sources pose challenges for the development of the
database, and for the analytical purposes to which we put that data.

The first type of heterogeneitywemust contendwith is the existence ofmul-
tiple, sometimes incompatible, phonological descriptions for a given language.
Since allowing multiple inventories for a given language poses significant ana-
lytical difficulties, we typically select one inventory from among the various
proposed for a given language, preferring those given in works that present
considerable supporting data and analytical detail, and prepared by authors
with substantial linguistic training. We also typically prefer inventories based
onmore recent work, on the grounds that recent work takes into account both
previous analyses and new data. To improve the quality of our judgments in
evaluating conflicting analyses, we also consulted specialists in particular lan-
guages, language families, and known linguistic areas in South America. In
cases where there is compelling evidence that the differences between inven-

4 This estimate is based on Fabré’s (2005) extensive bibliography of publications on South
American languages, from which our list of languages is largely drawn.

5 In this article, feature always refers to a feature of a language as a whole (such as the
presence or absence of a particular phoneme in the phonological inventory) rather than to
phonological features such as labial or unrounded.

6 We thank Mark Donohue for sharing this very useful coding technique with us.
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tories proposed for a given language are due to dialectal differences, we include
both dialects in the database.

The second type of heterogeneity stems from the divergent ways in which
different linguists treat the same empirical phenomena. In particular, different
representational choices can lead to differences between the inventories given
for different languages that do not reflect real differences between the inven-
tories in question. To remove these spurious differences, we subject the coded
inventories to phonological regularization prior to quantitative analysis (while
leaving the original coding intact in SAPhon).

To understand the motivation for phonological regularization, and to dem-
onstrate how it is carried out, it is useful to consider some concrete examples.
We first discuss the treatment of non-high front vowels in Tupí-Guaraní (tg)
languages. All tg languages exhibit two contrastive front vowels, represented
in descriptions as /i/ and either /e/ or /ɛ/ (and in one case, /ɪ/). In some of the
languageswhere the symbol chosen to represent the frontmid vowel phoneme
is /e/, the description explictly indicates that this vowel is phonetically realized
as [ɛ] (e.g. Kamaiurá; Seki, 2000), and in other tg languages the symbol chosen
for the mid front vowel phoneme is /ɛ/ (e.g. Nhandeva; Costa, 2003). In addi-
tion, there are several tg languages where the symbol used to represent the
non-high front vowel phoneme is /e/, but no information is provided as to its
phonetic realization. Crucially, no tg language exhibits two contrastive front
mid vowels: we never encounter a contrast between /e/ and /ɛ/.

For purposes of the analysis presented in this paper,we treat all tg languages
as having the same two front vowels phonologically: a high front vowel /i/
and a mid front vowel /e/. We implement this regularization by recoding the
phonemes given as /e/ or /ɛ/ in these languages as {e} (leaving the phonemes
in the underlying database untouched). The result of this normalization is to
recast the inventories of tg languages as exhibiting no difference in their front
vowels for the purposes of our quantitative analysis. This treatment of vowel
systems of these types is extended to all languages in our dataset. That is, we
treat all languages that exhibit only /i, e/ or /i, ɛ/ in their inventory of front
vowels as exhibiting /i, {e}/. Of course, in languages in which /e/ and /ɛ/ do
contrast, as in the majority of Macro-Ge languages, no regularization of these
segments is carried out.

The motivation for regularization as outlined thus far stems from the fact
that linguists vary in their choices of symbol to represent a given phoneme, but
there are also methodological and typological motivations for regularization.
First, given the phonetic similarity of [e] and [ɛ], it is likely that not all field
linguists systematically distinguish the two phones in languages in which they
do not contrast. Moreover, one would expect to often find non-contrastive
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variation between these two phones within such languages, based on a variety
of phonetic and sociolinguistic factors. This means that using both /e/ and /ɛ/
to represent the single mid front vowel present in different languages suggests
a greater degree of phonetic precision than is probably warranted.

Second, it is clear that in cases like that of Kamaiurá, mentioned above,
linguists choose the phoneme label that represents not the precise phonetic
value of its basic allophone (i.e. [ɛ]), but the typologically expected phoneme
in that area of the phonemic space (i.e. /e/), as delimited by the phonemes
withwhich it contrasts. Therefore, phoneme representations of this sort are not
directly comparable to those which opt for a representation that is more pho-
netically faithful to thebasic allophoneof thephoneme (i.e. /ɛ/). Regularization
resolves the discrepancy between these two principles for choosing phoneme
symbols by converting all ‘phonetically faithful’ phoneme symbols to ‘typolog-
ically unmarked’ ones.

A second phenomenon that illustrates a more analytically profound moti-
vation for regularization comes from the treatment of contrastive nasality in
SouthernAmerican languages, as exemplified by the treatment of surface nasal
vowels in Tukanoan languages. Briefly, surface nasal vowels are accounted for
in two ways in these languages: as the surface realization of underlying nasal
vowels, or as vowels that have undergone nasalization due to a morpheme-
level nasalization feature that spreads nasalization onto the vowels in question
(see, e.g. Gomez-Imbert, 1993 and Stenzel, 2004). The former analysis tends to
be common in earlier works on languages of this family, and the morpheme-
level nasal spreading analysis is typical ofmore recents works. In general, these
appear to be two different ways to analyze materially similar distributions
of nasal features, and we regularize the phonological systems in question by
including the nasal counterparts of all oral vowels in the phonological invento-
ries of languages that have been analyzed as exhibiting morpheme-level nasal
spreading.

We list the regularization rules and discuss how they are applied to the
SAPhon dataset in Appendix a.

3.2 Applying Core and Periphery to Andean Languages
In this paper we illustrate the Core and Periphery technique by using it to
explore the Andean phonological area, and two phonological sub-areas within
this larger area: the Southern Andean phonological area and North-Central
Andean phonological area. In doing so, we exemplify how the technique works
when selecting cores of varying degrees of initial insightfulness.

The choice of the Andean highlands as a candidate core is an obvious one
for areal specialists. Büttner (1983: 179), for example, observed that South-
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ern Andean languages exhibit similar phonological inventories, and observa-
tions by linguists like Dixon and Aikhenvald (1999) regarding the phonological
distinctiveness of the Andean and Amazonian regions are generally deemed
uncontroversial (even if detailed evidence for such claims is not presented).
Similarly, the Andes is generally recognized as a culture area which has, at dif-
ferent points in time, been dominated by large empires or polities, including
Wari, Tiwanaku, and the Inkas (Steward and Faron, 1959: 5–16).

In our first Core and Periphery analysis, we operate on a proposed Andean
core that consists of the 23 languages located in the contiguous mountainous
region of western South America above 2,000 meters in elevation, from Patag-
onia in the south to the Ecuadorean Andes in the north. The 2,000 meter limit
clearly separates Amazonian groups whose territory extends into the Andean
piedmont from Andean peoples, and the northern limit of the Ecuadorean
Andes corresponds to the extent of the Andean culture area, as defined by
the northernmost limit of Quechuan expansion. In the control set we include
the 113 languages of the region beginning at 1500km from the nearest Andean
language, extending to the furthest limits of the continent. The remaining 223
languages in the the 1,500 kilometer-wide strip between the core and control
languages make up the equivocal set of languages about which we posit noth-
ing in advance.

Our second Core and Periphery analysis is motivated by the observation
that, although all Andean languages share features that distinguish them from
non-Andean languages, the Southern Andean languages exhibit distinctive
features not found in most Central or Northern Andean languages (e.g., a
series of ejective consonants) while the latter group of languages exhibits
distinctive features not generally found in the former group (e.g., retroflex
affricates). These facts suggest that it may be useful to treat the Andean area
as comprising two subcores: a Southern core and a North-Central core. There
are also sociohistorical facts suggesting that it may be useful to distinguish two
cores in this way, namely, the fact that the Southern core corresponds roughly
to extensions of the Tiwanaku empire (approximately the area of modern
highland Bolivia) and that the North-Central core corresponds roughly to the
extension of the Wari horizon (Isbell, 2008). For the purposes of this analysis,
we posit a Southern Andean core of 10 Andean languages south of the line
that separates languages with ejectives from those without ejectives, with the
remaining 19 Andean languages constituting the North-Central core.
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4 Exploring Language Contact with a Naive Bayes Classifier

4.1 Overview
A naive Bayes classifier is a probabilistic model that classifies objects into K
classes. Such a classifier is first trained on many examples, each labeled by a
human expert with the class to which it belongs. Thereafter, when presented
with a novel object, the classifier will report with what probability the object
belongs to each of the K classes.7

A common application of this technology is spam filtering. An e-mail
accountmay receive dozens of unwantedmessages every day, but a typical clas-
sifier is smart enough to put almost all of them into a spam folder, saving the
user the trouble of ever having to look at them. In this application there are
two classes: spam and non-spam. The classifier is trained on messages that it
knows to be spam (such as those the user manually flags) and those it knows
to be non-spam (such as those that the user does not flag after reading). This
continuously-trained classifier is applied to incoming messages, and usually
works very well.8

A naive Bayes classifier analyzes each object in terms of features that char-
acterize it. In the case of e-mail, the features are the words that a message
contains. When an incoming message is analyzed, each word will push the
classification toward spam or non-spam, depending on how strongly the word
is associated with spam or non-spam in the messages on which the classifier
has been trained. A word such as Viagra is a strong indicator of spam, whereas
most low-frequency words (such as analysis or linguistics) are weak indicators
of non-spam. The classifier combines the evidence from each word to reach a
verdict about the message as a whole.

7 The origin of the naive Bayes classifier is obscure. It is a straightforward but non-trivial
application of Bayes’ Theorem, which dates from the 18th century. Widely-used texts such as
Mitchell (1997), Manning and Schütze (1999), Bishop (2007), and Jurafsky and Martin (2009)
discuss it without commenting on its origin. Gale et al. (1992), cited in Manning and Schütze
(1999), apply a naive Bayes classifier to the problem of word-sense disambiguation in natural
language processing, without referring to it as such. That paper, in turn, cites Mosteller and
Wallace (1963), a famous paper that used a naive Bayes classifier (also not referred to as such)
to determine the authorship of twelve of the Federalist Papers. We suspect that naive Bayes
classifiers were used in diverse settings before the name itself caught on.

8 The first academic papers to discuss Bayesian spam classifiers appeared in 1998 (Pantel and
Lin, 1998; Sahami et al., 1998). However, it was an essay from 2002 titled A Plan for Spam that
popularized the concept and made specific proposals to lower the rate of false positives to
the point where the technology became usable (Graham, 2008).
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Adapting this technology to classifying languages is straightforward:we train
a classifier on training languages from K classes of interest, and use it to prob-
abilistically classify a test language. (If there are multiple test languages, the
classifier is run once for each test language.) The analyst provides a featural
specification for each language, and a class label for each training language.
As explained in Section 3.1, the featural specification is an encoding of the
phonological inventory in which each feature is a phoneme or a suprasegmen-
tal feature that is either present or absent in the language. During training,
the classifier calculates how strongly each phoneme is associated with each
class. Then, in order to classify a test language, the classifier combines the
evidence from each feature and assigns K probabilities to the test language—
these are the probabilities that the test language belongs to each of the K clus-
ters.9

4.2 Two-Way Classification
A two-way classifier is a special case of a general K-way classifier that can
be explained in simpler terms, so it will be discussed first. Training a classi-
fier with two classes entails calculating a feature weight for each feature that
expresses how strongly each feature is associated with each class. The weight
for feature l is

ul = log(N1l
N2l

÷ N1
N2

) [provisional].

N1l is the number of training languages in class 1 that have feature l, and N1
is the total number of training languages in class 1. N2l and N2 are analogous
quantities for class 2. The first ratio N1l/N2l is a comparison of the counts

9 When we were devising the Core and Periphery technique, we tried using other kinds of
classifiers besidesnbc, such as support vectormachines and logistic regression. The latter two
are most often presented as classifying objects into two classes, but multiclass versions exist.
All three classifiers are supervised learners, in that they classify based on examples provided
by the analyst. In practice, nbc worked better than the other two methods, perhaps because
it is a generativemodel, whereas the other two are discriminativemodels. Generativemodels
tend to work better when the number of data points in the training data is relatively small
and the dimensionality of the data is large (Ng and Jordan, 2001).

As for unsupervised analyses such as principal components analysis or multidimensional
scaling, these are certainly useful as exploratory data analyses, and they may even identify
potentially interesting linguistic areas. But since they are unsupervised, they cannot be
directedby an analyst to examine an areal hypothesis that the analyst is specifically interested
in. We thus omit mention of these analyses in discussing the Core and Periphery technique.
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of feature l in the two classes. This is counterweighted by the second ratio
N1/N2, which expresses the relative sizes of the two classes. The logarithm
has the effect of causing the weight to be zero when the feature is neutral,
positive when it is associated with class 1, and negative when associated with
class 2.

One problem with this formula is that when any of the counts are zero, the
feature weight ul ends up at either positive or negative infinity. To prevent this,
we inflate the counts by a small amount in order to regularize the result:

ul = log( 𝛼 + N1l
𝛼 + N2l

÷
𝛼 + β + N1
𝛼 + β + N2

).

For many applications it suffices to set 𝛼 = β = 1/2, but in our analyses we fit
these parameters to the data, as explained in Appendix b.3.

Strictly speaking, the above expression gives the feature weight for the pres-
ence of a feature. It is also necessary to calculate weights for the absence of a
feature, via

vl = log(
β + N1 − N1l
β + N2 − N2l

÷
𝛼 + β + N1
𝛼 + β + N2

).

Themain difference is that counts for the presence of a featureN1l andN2l have
been replacedby counts for the absenceof the featureN1−N1l andN2−N2l. Once
feature weights (for both present and absence features) have been calculated,
the classifier is ready to classify.

For the test language, the classifier produces a score

s =
L

∑
l=1

{ ul if feature l is present in the test language,
vl if feature l is absent in the test language. (1)

This score is a summation over all features (numbered from 1 to L) of feature
weights, using ul if feature l is in the test language, or vl if feature l is not. The
interpretation of the score is similar to that of the weights. A score of zero
means that the test language is equally likely to belong to either class; a positive
scoremeans that it ismore likely to belong to class 1; and anegative scoremeans
that it is more likely to belong to class 2.

4.3 UnderlyingModel and K-Way Classification
The previous section discussed naive Bayes classification from a procedural
perspective. Now we engage in a brief discussion of the model that underpins
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the procedures. The model posits that our data, which comprise the training
languages, the test language, and the labels for the training languages, were
generated via a set of random events, which are as follows.10

– Randomly generate a feature frequency θkl for each feature l and each class
k. This is the probability that a language in class kwill have feature l. Feature
frequencies are unobserved.

– Assign each language, including the test language, to one of K classes with
probability 1/K.11 The assignments of the training languages are observed.
The assignment of the test language is unobserved.

– For each language, endow it with feature lwith probability θkl, where k is the
class of the language. Each feature is generated independently of the others,
conditional on k. The features that a language has are all observed.

With this as the premise, the classifier seeks to infer the class of the test lan-
guage. It calculates, for each class k, the probability f(k) that the test language
would be generated by the feature frequencies θk1, …, θkL of class k. From this
it infers that the test language belongs to class kwith probability

pk =
f(k)

f(1) + f(2) + ⋯ + f(K) . (2)

If the feature frequencies were known, the formula for f(k) would be straight-
forward:

f(k) =
L

∏
l=1

{ θkl if feature l is in the test language,
1 − θkl if feature l is not in the test language. [provisional]

The classifier is essentially calculating the likelihood of each choice f(k) by
taking the product of the probability of generating each feature value (present

10 When thinking about such models, W.C. finds it helpful to imagine a deity generating the
data according to the procedure given, with some of the deity’s choices hidden from view.
What is not hidden comprises the data. On the basis of this data, we infer some of the
hidden things.

11 In a more sophisticated variant of this model, each language is assigned to class k with
some probability πk. The random variable πk is not observed, and must be inferred from
the data. In two-way classification, this adds a term such as log[N1/N2] to the score of the
test language. When the number of training languages is fixed (as in our analyses), this
termmoves all scores up or down by a fixed amount, and does not alter any conclusions.
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or absent) in the test language.We do not knowwhat these feature frequencies
are, but we can obtain some insight (albeit not exactly the right answer)
by estimating the feature frequencies directly from the data via the formula
θkl = Nkl/Nk, where Nkl is the number of times feature l exists among training
languages of class k, and Nk is the total number of training languages of class k.
We get:

f(k) =
L

∏
l=1

⎧{
⎨{⎩

Nkl
Nk

if feature l is in the test language,

Nk−Nkl
Nk

if feature l is not in the test language.
[provisional]

The correct equation, obtained by integrating over all possible values for all
feature frequencies, is similar. If we posit a beta distribution prior for each
feature frequency θkl ∼ Beta(𝛼, β) we get the following expression for the
likelihood:

f(k) =
L

∏
l=1

⎧{{
⎨{{⎩

u�+Nkl
u�+β+Nk

if feature l is in the test language,

β+Nk−Nkl
u�+β+Nk

if feature l is not in the test language.
(3)

This, along with Eq. 2, yields the probabilities p1, …, pK forK-way classification.
Appendices b.1 and b.2 restate the contents of this section more formally and
expand on it.

4.4 Probabilistic Interpretation of nbcWeights and Scores
Eq. 1 in Section 4.2 describes how to compute an nbc score, which indicates
how a test language is classified when K = 2. However, Eq. 2 in Section 4.3
derives a different indicator of classification: pk, the probability with which the
test language belongs to class k. How do these two kinds of indicators relate to
each other?

It turns out that when K = 2, there is a straightforward mapping between
the score s and p1 (the probability that a test language belongs in class 1). They
are related by the function S(o) = 1/(1 + e−o). This function is plotted here.
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In general, this sigmoid function translates from values that have a range of
[−∞, ∞] to a probability, which has a range of [0, 1]. The argument o is a
log-odds, so-called because it is the log of an odds ratio.

When K = 2, s is the log-odds that corresponds to the probability p1, i.e.
S(s) = p1. Conversely we can apply the inverse function S−1(p) = log p/(1−p)
to p1 to get s. According to Eq. 2, the probability that the test language belongs
to class 1 has the form p1 = f(1)/[ f(1) + f(2)]. Converting this probability to a
log-odds yields a score s = log f(1)/f(2), which expands to

s =
L

∑
l=1

log
⎧{{
⎨{{⎩

u�+N1l
u�+N2l

÷ u�+β+N1
u�+β+N2

if feature l is in the test language,

β+N1−N1l
β+N2−N2l

÷ u�+β+N1
u�+β+N2

if feature l is not in the test language.

We see here that each feature value (present or absent) contributes in an
additiveway to the score. Comparing this toEq. 1 showshow the featureweights
were derived.

When K > 2, the structure of the computation in Section 4.3 does not
result in additive featureweights for each feature, and sincewedonot compute
feature weights before computing p1, …, pK for the test language, there is no
distinct training stage. Also, since the classification results in more than two
probabilities, it is no longer possible to indicate the classification of the test
language with a single score. We can, however, convert each pk into a log-odds
and indicate the classification with K scores. When reporting the results of
3-way classification in Appendix c.2, this is what we do.

4.5 Feature Non-Independence and the Interpretation of Results
The name of the naive Bayes classifier derives from the naive assumption that
the features in a language are generated independently, given the class of the
language. In reality, however, the existence of one phoneme in an inventory is
often strongly correlated with the existence of other phonemes in that inven-
tory. For example, a language with /e/ often tends to have /o/, and vice versa.
Similarly, a languagewith an ejective stop at one place of articulation also tends
to have ejective stops at other places of articulation. In this respect, having
multiple mid-vowels or having multiple ejective stops is a single ‘fact’ about
a language, but a naive Bayes classifier will treat each fact of this sort as a set
of multiple, independent facts. That is, the presence of mid-vowels is treated
as two facts: the presence of /e/ and the presence of /o/. Similarly, the pres-
ence of ejective stops is treated as multiple facts about the presence of ejective
stops at each place of articulation. This kind of multiple counting results in
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inflated scores, producing an effect of exaggerated certainty in classifying a lan-
guage.All languageswill suffer fromthis effect to someextentwhenundergoing
classification, since feature non-independence (or, more colloquially, feature
clumping) occurs frequently. Vowels of a given height, nasal vowels, long vow-
els, voiced stops, aspirated stops, ejective stops, etc.: each of these classes of
sounds tends to be a clump. The presence or absence, in a test language, of
any of these clumps exaggerates classification probabilities, rendering a literal
probabilistic interpretationproblematic. In our analyses,we sidestep this prob-
lem by disregarding the literal interpretation of the classification probabilities
and reinterpreting them as measures of linguistic admixture. This interpretive
leap calls for a careful explanation of admixture and how it is that admixture is
not directly modeled by a naive Bayes classifier, to which we now turn.

By the term ‘admixture’ we refer to the phenomenon where the features of
a language derive from two or more sources. This is analogous on some level
to genetic admixture, where a person inherits certain genes from one parent
and certain genes from the other; or, more abstractly, where a person inherits
features from each of theK distinct ancestral populations in his or her ancestry.
If we were to posit admixture for circum-Andean languages, one way to do this
would be to posit two sources, one for the Andean core and one for the control
class, described in Section 2. Each source is a hypothetical ancestral population
in which there is a certain amount of linguistic diversity. A source does not
have to be an actual set of precursor languages, though this is a good way to
conceptualize it.12 Each modern language descends from one or more sources.

A pure language derives its features from just one source. If, for example, all
of the languages in the ancestral population have /p/, then a descendant of that
source will also have /p/. If 60% of the languages in the ancestral population
have /x/, then a descendant of that sourcewill have /x/with 60%probability. In
general, the probability that a descendant has a featurematches the probability
that a randomly-chosen constituent of the ancestral population has it.13 Since
there is some diversity in any ancestral population, one pure descendant does
not have to be identical to another, but it will in almost all cases be classified
as descending from that population with little ambiguity, when all features are
taken into account.

12 Formally, a source is represented by a bank of feature frequencies, one for each feature.
Source k is represented by feature frequencies (θk1, …, θkL), where θkl is the frequency of
feature l among the languages of ancestral population k. This is formally identical to how
a class is modeled in nbc; see first bullet in Section 4.3.

13 This is formally identical to how languages are generated innbc; see third bullet in Section
4.3.
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A mixed language derives its features from more than once source. If, for
example, two ancestral populations are involved, then a certain fraction of the
mixed language’s features may derive from one, while the rest derive from the
other.14 It is often much more reasonable to posit that a language is mixed
rather than pure. For instance, if a language has many distinctively Andean
features and also many distinctively non-Andean features, then it is, on an
intuitive level, best to posit admixture. (Just as, if a dog has many poodle
features and many labrador features, one surmises that it is a mixed breed.)
When a language is mixed, it is often possible to infer the extent to which it
drew from each ancestral population. For circum-Andean languages, such a
statistic would indicate how core-like or control-like a language is.

However, as previously mentioned, the naive Bayes classifier is not a model
of admixture. Rather unrealistically, every test language is assumed to be a pure
language. Classification involves determining not to what extent the language
descended fromeachancestral population, butwithwhatprobability. Our inter-
pretive leap is to use the latter as an indicator of the former. Unfortunately,
the coarseness of this method of interpretation does not allow us to infer the
absolute proportions of admixture in a language. If the model reports that a
language belongs to class k with probability 0. 7, that is by no means the same
as indicating that 70% of the phonemes of the language are from the source
identified with class k. We can only conclude that, if pk is higher for language
X than for language Y, then X probably derives more of its phonemes from the
source corresponding to class k than Y. This relativistic interpretive strategy,
whatever its drawbacks, has the benefit that it allows us to work around the
fact that feature clumping exaggerates classification probabilities and deprives
them of their usual interpretation.

4.6 Details in Applying theModel
4.6.1 Feature Culling
We previously assumed that feature clumps tend to be of limited size, so
that there is a limit to how much a single clump can affect classification
probabilities. In general this seems to be true, but there is a notable exception:
rare features. Rare features tend to occur together in very large clumps. For
instance, there are 112 features in our dataset that occur in exactly one language,
but twelve of them occur in the same language, Paez, causing the classification
of Paez tobe greatly exaggerated. Toprevent outcomesof this sort,wediscarded

14 For an example of a model that implements admixture in exactly this way, see Pritchard
et al. (2000).
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fromour analyses all features that occur in five or fewer training languages. This
amounted to discarding 225 of the 304 features in the dataset, leaving 79.

Tobe consistentwith culling rare features,wehave also cullednear-universal
features on the theory that, when absences are rare, the absences can clump
together just like rare features. Thus, we discarded any feature that is present
in all but five or fewer training languages. This resulted in discarding /t/, /k/,
/i/, and /a/ from our analyses, leaving 75 features.

4.6.2 Measuring Admixture in a Training Language
When using a naive Bayes classifier to measure admixture, we should not
exempt the training languages from scrutiny. However, it would prejudice the
model for a test language to be a training language too. When we wish to apply
the classifier to a training language in class k, we remove it from the set of
training languages first. This lowers the count Nk in Eq. 3 by one, and lowers
Nkl by one for each feature l present in the language. After this adjustment,
classification proceeds as before.

4.6.3 Feature Deltas
In a two-way classifier, the feature weights ul and vl give measures of the
association between class 1 and, respectively, the presence or the absence of
feature l. Having two weights for each feature is cumbersome if all we wish
to know is the degree of association between a feature and a class. Using the
formulas in Section 4.2, we define a measure called delta:

δl = ul − vl = log( 𝛼 + N1l
β + N1 − N1l

) − log( 𝛼 + N2l
β + N2 − N2l

).

Thismeasure is zero if the feature is neutral, positive if it is associatedwith class
1, and negative if it is associated with class 2. We can generalize delta to K-way
classification by defining a set of K deltas for each feature:

δkl = log( hkl
1 − hkl

) − log(
∑j≠k hjl

∑j≠k 1 − hjl
),

where hkl = (𝛼+Nkl)/(𝛼+β+Nk). The summations are from 1 toK, excluding
k. The element δkl is zero if feature l is neutral with respect to class k, and
positive or negative if feature l is positively or negatively associated with class
k, respectively. A feature that is neutral with respect to all K classes will have
zeros for all K deltas.
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5 Results

5.1 Single Andean Core
The feature deltas (henceforth ‘deltas’) resulting from the nbc analysis of the
Andean core are given in Fig. 1. Positive deltas contribute to the classification of
the languages that bear themasAndean,while negativedeltas contribute to the
classification of the languages that bear them as non-Andean. The presence of
phonemes like /q/ and /ʎ/ in the inventory of a given language thus contributes
strongly its classification as Andean, while the presence of /ɨ/ or /ã/ strongly
contribute to its classification as non-Andean.

The deltas given in Fig. 1 yield the distinctive phonological profile for the
Andean core given in Table 1. In these tables we (somewhat arbitrarily) select
a delta of ±2 (p = 0. 88) as the cutoff for segments whose presence or
absence is strongly characteristic of the Andean core, and deltas between 1
and 2 (0. 73 < p < 0. 88) and −1 and −2 as the range for segments whose
presence or absence, respectively, are moderately characteristic of the Andean
core. Strongly characteristic segments are printed in bold, while moderately
characteristic ones are printed in normal weight.

Thedistinctive phonological profile of theAndean core languages, i.e. the set
of segments that distinguish theAndean core languages fromcontrol languages
in terms of either their presence or their absence, is large. The size of this
distinctive phonological profile strongly suggests that the chosen core forms
part of a phonological area distinguishable from the set of control languages.

The distinctive Andean consonantal profile can be positively characterized
as exhibiting contrastive aspirated and ejective stops (a contrast found also in
the postalveolar affricate), aswell as a comparatively large number of affricates,
fricatives, and liquids. Less common places of articulation that contribute
positively to the profile include palatal (nasal and liquid) and uvular (stop and
fricative). The consonantal profile can be negatively characterized as excluding
the voiced alveolar stop and affricate, the labialized velar voiceless stop and
nasal, voiced bilabial and voiceless labiodental fricatives, and the glottal stop
and fricative. The distinctive Andean vocalic profile is positively characterized
by /u/ and /iː, uː, aː/, but negatively by the absence of mid vowels, non-low
central vowels, nasal vowels, and long versions of many of these vowels.

The nbc score of each language is given in Appendix c.1 and is plotted on a
map in Fig. 2, where the orange line is a smoothed version of the 2000-meter
elevation contour. Languages with nbc scores near zero, and hence, difficult
to classify as either Andean or non-Andean, appear in light gray. Higher nbc
scores for a language correspond to greater red saturation, while the lower (i.e.
negative) nbc scores correspond to greater blue saturation.
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figure 1 Feature deltas for single core Andean analysis

table 1 Distinctive features of the Andean core languages. Left: distinctive phonemes
(positive feature deltas). Right: distinctive absences (negative feature deltas).

ph p’ th t’ kh k’ q qhq’ d kw ʔ
tʃ tʃh tʃ ’ ʈʂ dʒ

s ʃ x χ β f h
ɲ ŋw

l ɾ ʎ

iː u uː i ̃ i ̃ː ɨ ɨː 󰀰 ̃ 󰀰 ̃ː ũ ũː tone
e ẽ ẽː ɛ ɛ̃ ə əː ə̃ ə̃ː o õ õː ɔ ɔ̃ ɤ

aː ã

Inspection of Fig. 2 reveals that a penumbra of languages with high nbc
scores surrounds the posited Andean core, which is dense with languages with
very high nbc scores. Following our discussion of the interpretation of nbc
scores in Section 4.5, the high nbc scores of many of the languages in the
circum-Andean peripheral region indicate that their phonological inventories
much more closely resemble those of core Andean languages than those of
the control languages, suggesting phonological admixture with Andean lan-
guages.
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figure 2 Languages of South America (two-way Andean core nbc scores)
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Figure 2 also shows that the nbc score tapers gradually with distance from
the Andean core. The periphery of this phonological area is thus diffuse, lack-
ing a clear boundary separating peripheral languages that are unambiguously
members of the phonological area, such as Yanesha’ [ame], from those that
are clearly not, such as Aguaruna [agr]. If we consider any language with an
nbc score greater than zero to be a candidate for membership in the area, and
(somewhat arbitrarily) any language with an nbc score in the 95th percentile
or greater to be a strong candidate for membership in the area, we obtain a
partitioning of the periphery into ‘strong’ and ‘weak’ members of the linguistic
area. These peripheral members of the Andean core mostly cluster geograph-
ically, as indicated below, and are displayed in the more detailed maps in Figs
3–5.

ecuadorean foothills
Strong: Cha’palaa [cbi] (Barbacoan)
Weak: Kamsá [kbh] (isolate)

huallaga valley
Strong: Chamicuro [ccc] (Arawak), Cholón [cht] (isolate)
Weak: Shiwilu [jeb] (Cahuapanan), Candoshi [cbu] (isolate)

southern peruvian foothills
Strong: Yanesha’ [ame] (Arawak)
Weak: Ashéninka (Apurucayali [cpc] and Pichis [cpu] dialects) (Arawak)

chaco
Strong: Vilela [vil] (isolate), Maká [mca], Chulupí [cag] (both Matacoan)
Weak: Wichí [mtp] (Matacoan), Toba Takshek [tob_tks], Toba Lañagashik
[tob_lng], Mocoví [moc] (all three Guaicuruan)

patagonia
Strong: Ona [ona], Haush [ona_mtr], Puelche [pue], Tehuelche [teh] (all
Chon)
Weak: Northern Alacalufan [alc_nth], Central Alacalufan [alc_cnt], and
Southern Alacalufan [alc_sth] (Alacalufan)

miscellaneous
Weak: Arabela [arl] (Zaparoan), Leko [lec] (isolate)

lowland quechuan languages
Strong: Ferreñafe Quechua [quf], Inga (Jungle dialect) [inj], Napo Quichua
[qvo], San Martín Quechua [qvs], Santiago del Estero Quechua [qus]

In several of these regions, such as the Ecuadorean foothills, the Huallaga
River valley region, and the Southern Peruvian Foothills regions, significant
contact between speakers of Andean languages and the relevant non-Andean
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figure 3 Languages of the North Andes and Circum-Andean regions (two-way nbc scores).
See Fig. 9 for language names.

languages is either known to have taken place (see, e.g. Adelaar and Muysken,
2004, 411–413; Payne, 1990, 1–10), or such contact is generally plausible, due to
geographical proximity and the ubiquity of trade between adjacent highland
and lowland regions.

Somewhat more surprising is the fact that Patagonia and the Chaco con-
stitute an essentially contiguous phonological area with the southern Andes.
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figure 4 Languages of the Central Andes and Circum-Andean regions (two-way nbc scores).
See Fig. 10 for language names.

Although there is evidence of trade between the Tiwanaku polity and the
inhabitants of the Chaco between approximately 100ad and 1100ad (Angelo
and Capriles, 2000; Lecoq, 1991; Torres and Repke, 2006), it is unclear whether
those relationswould have been sufficiently intense to produce the kind of con-
vergence we see between the southern Andean languages. Nevertheless, one
Chacoan linguistic isolate (Vilela) and several Chacoan languages of the Mata-
coan and Guaicuruan families exhibit features strongly statistically associated
with the Andean highlands, including ejectives, uvular consonants, and the
palatal lateral. Evidence of contact between Patagonian and southern Andean
peoples is even sparser, but the former languages likewise exhibit features
characteristic of the Andean core languages. It should be noted that in Pre-
Colombian times, the territory occupied by speakers of Patagonian languages
was contiguous with that occupied by Chacoan peoples (Viegas, 2005: 30),
raising the possibility that the similarity between Andean and Patagonian
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figure 5 Languages of Patagonia (two-way nbc scores). See Fig. 11 for language names.
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languages arose not from direct contact between the languages of these two
regions, but was mediated by Chacoan languages.

Admixture between circum-Andean languages and more northern lan-
guages of the Andean core appears to involve relatively local and recent con-
vergence of these peripheral languages to Andean core ones, but the pho-
nological convergence evident among Chacoan, Patagonian, and southern
Andean languages does not exhibit clear directionality. The circumstances
that led to this broader areal convergence are less clear, suggesting that much
older, possibly multilateral, processes of phonological borrowing are respon-
sible for the large-scale phonological areality we see in the South American
Cone.

In addition to the languages enumerated above, which comprise an essen-
tially contiguous region with the Andean highlands, we find three other lan-
guageswithpositivenbc scoreswhoseparticipation in theAndeanand circum-
Andean phonological area is dubious. These languages, listed below as out-
liers, obtain their high nbc scores due, in large part, to having aspirated stops
and/or a palatal lateral in their phonological inventories. Given the probabilis-
tic nature of nbc results and the great distance of these languages from the
Andean core, which renders historical contact with the Andean core languages
extremely unlikely, we conclude that these languages simply bear a chance
resemblance to the languages of the Andean core.

outliers:
Strong: Yawalapití [yaw] (Arawak)
Weak: Yucuna [ycn] (Arawak), Yaathe [fun] (Macro-Ge)

5.2 Southern and North-Central Cores
Although there are sound reasons for positing a single Andean core, there
are also linguistic and socio-historical reasons to suspect that the Andean
highlands exhibit linguistically distinguishable sub-areas. For example, simple
inspection of Andean phonological inventories reveals that southern Andean
languages exhibit a three way aspirated/ejective/plain stop contrast and uvu-
lar consonants, whereas these features are rare or entirely absent in central or
northern Andean languages. The social histories of the two regions are also
quite different, with the southern Andes historically dominated first by the
Tiwanaku polity and then by Aymaran peoples, who only partially penetrated
into the central Andes (Adelaar, 2012: 578). The central and northern Andes, in
contrast, were dominated first by theWari horizon and later byQuechuan peo-
ples, who penetrated into the southern Andean region only shortly before the
arrival of Europeans.



exploring phonological areality in the circum-andean region 53

Language Dynamics and Change 4 (2014) 27–86

These observations motivate a dual core analysis that distinguishes South-
ern andNorth-Central cores, where the division is defined by a line that groups
Jaqaru and Cuzco-Collao Quechua with all Andean languages to their south,
and Ayacucho Quechua with all Andean languages to its north.15 The deltas for
the Southern core are given in Fig. 6, and its distinctive phonological profile
in Table 2. The deltas for the North-Central core can be found in Fig. 7, and its
distinctive phonological profile in Table 3.

The deltas and distinctive profiles for the two cores exhibit significant dif-
ferences, while sharing some characteristics that distinguish them both from
languages outside either cores. Consonants that positively characterize the dis-
tinctive phonological profiles of both Andean cores include /s l ʎ ɲ/, and those
that negatively characterize both cores include /β f ɲw/. Vowels that positively
characterize both cores include /iː uː aː/, while those that negatively character-
ize them include the absence of mid vowels, non-low central vowels, and nasal
vowels. Both cores also lack tone.

Other features yield large positive deltas for one core but negative ones
for the other, distinguishing the cores not only from control languages, but
from each other. Ejective and aspirated consonants yield positive deltas for
the Southern Andean core, as do uvular stops and the lateral fricative /ɬ/, but
negative deltas for the North-Central Andean core. The converse holds for /tʂ
g z ʃ/.

Yet other features yield large positive or negative deltas for one core, but do
not yield a large deltas for the other. For the Southern core these include /x χ/
and the absence of /d ɸ w ɤ/. In contrast, /ts/ is positively associated with the
North-Central core profile and /ɣ/ negatively with it, but neither is salient for
the Southern core. Turning to the vowels, both cores are negatively associated
with central vowels, but the North-Central core exhibits a stronger negative
association with short mid-vowels, as /e o/ are not significantly negatively
associated with the languages of the Southern core.

The three-way nbc scores are plotted on a map in Fig. 8. Whereas the two-
way, single core results provide a one-dimensional measure of how core-like
or control-like a given language is, the three-way, dual core results indicate
to what degree a given language resembles the languages of either of the two
cores, as well as the non-core languages. We interpret this as different degrees
of admixture between the Northern-Central core, the Southern core, and the
control class. The amount of yellow, red, and blue in the color of each dot

15 This line was chosen to group together the Andean languages with a three-way contrast
between plain, aspirated, and ejective stops.
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figure 6 Southern Andean core feature deltas

table 2 Distinctive features of the Southern Andean core languages. Left: distinctive
phonemes (positive feature deltas). Right: distinctive absences (negative feature
deltas).

ph p’ th t’ kh k’ q qhq’ d ɡ ʔ
tʃh tʃ ’ dʒ ʈʂ

s x χ ɸ β f z ʃ
l ɬ ʎ ŋw

ɲ w

iː uː i ̃ i ̃ː ɨ ɨː 󰀰 ̃ 󰀰 ̃ː ũ ũː tone
eː oː eː ẽ ẽː ɛ ɛ̃ ə əː ə̃ ə̃ː õ õː ɔ ɔ̃ ɤ

a: ã ãː

encodes the proportion of those three components, respectively. In point of
fact, there are no instances of significant admixture between just the two
Andean cores, and all cases of significant admixture involve sizeable non-core
components.

The qualitatively most significant result of the dual core analysis is that
the majority of the languages of the Andean periphery identified in the single
core analysis do in fact align with one of the two sub-cores, and do so in a
geographically plausiblemanner. Languages which exhibit high Southern Core
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figure 7 North-Central Andean core feature deltas

table 3 Distinctive features of the Northern-Central Andean core languages. Left: distinctive
phonemes (positive feature deltas). Right: distinctive absences (negative feature
deltas).

ts tʃ ʈʂ ɡ ph p’ th t’ kh k’ kw q qh q’ ʔ
s z ʃ tʃh tʃ ’

β f ɣ
l ʎ ɬ

ɲ ŋw

iː uː i ̃ i ̃ː ɨ ɨː 󰀰 ̃ 󰀰 ̃ː ũ ũː
e eː ẽ ẽː ɛ ɛ̃ ə əː ə̃ ə̃ː o oː õ õː ɔ ɔ̃ ɤ

aː ã ãː

nbc scores are generally closer to the Southern Core than to the North-Central
Core, and conversely for languages with high North-Central nbc scores. The
fact that Andean-like languages in the peripheral region pattern with the near-
est core, rather than being randomly associated with either sub-core, indicates
that convergence between circum-Andean languages and Andean languages is
a relatively local effect, attributable to language contact between the Andean
languages of each sub-core and their circum-Andean neighbors.
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figure 8 Languages of South America (three-way nbc scores)
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The principal ways in which the results of the dual core analysis differ
from the results of the corresponding single core analysis are twofold: 1) The
dual core analysis includes more geographically proximal languages of this
peripheral region in the phonological areas associated with the Andes; and
2) it increases how strongly these peripheral languages pattern with the core
languages, as listed below and displayed in Fig. 9.16 Kamsá [kbh], Shiwilu [jeb],
and Candoshi [cbu], for example, were weak members of the area under the
single core analysis, but become strong members under the dual core analysis,
Panobo [pno]has gone fromnot evenbeing aweakmember of the area tobeing
a strong member. Similarly, Andoa [anb], Sápara [zro], and Muniche [myr]
went from being non-members to being weak members.

Languages of the North-Central Andean Periphery:

ecuadorean foothills
Strong: Kamsá [kbh], Cha’palaa [cbi]
Weak: Andoa [anb], Sápara [zro]

huallaga valley
Strong: Shiwilu [jeb], Cholón [cht], Candoshi [cbu]
Weak: Muniche [myr]

southern peruvian foothills
Strong: Yanesha’ [ame], Panobo [pno]

Some languages, on the other hand, end up being excluded from membership
in the North-Central area as a result of the dual core analysis, including Cham-
icuro [ccc], which was formerly a strong member of the (single core) Andean
area, as well as Ashéninka (Apurucayali [cpc] and Pichis [cpu] dialects) and
Arabela [arl], which were formerly weak members of the area. In the case of
the Ashéninka varieties, they appear in the region of the tri-polar plot that sug-
gests admixture of non-core features with both Southern and North-Central
features, a result that is consistent with their location near the boundary of the
Southern andNorth-Central cores. Chamicuro, in turn, just barelymisses being
aweakmember of theNorth-Central area; although it exhibits strongly positive
North-Central features like the retroflex affricate, and less strong ones, like the
palatal lateral, it also exhibits mid-vowels and glottal stop, which are strongly
negatively weighted for this core.

16 That is, the nbc scores reflecting membership in the relevant cores increase for these
languages when switching from a single core to a dual core analysis.
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figure 9 Languages of the North Andes and Circum-Andean regions
(three-way nbc scores).Quechua is abbreviated q. Dialect
names are parenthesized.

ame Yánesha jeb Shiwilu qvn_caj North Junín q.
anb Andoa jiv Shuar (San Pedro de Cajas)
arl Arabela jqr Jaqaru qvn_tar North Junín q. (Tarma)
cbi Cha’palaa kbh Camsá qvo Napo Quichua
cbu Candoshi-Shapra mcf Matsés qvs San Martin q.
ccc Chamicuro myr Muniche qwa Ancash q.
cht Cholón pno Panobo (Sihuas and Corongo)
cod Kokama-Kokamilla qub Huallaga Huánuco qxl Salasca q.
cpc Ashéninka q. qxn Huaylas-Conchucos q.

(Apurucayali) quf Ferreñafe q. qxw Jauja-Huanca q.
cpu Ashéninka (Pichis) quk Chachapoyas q. sey Secoya
huu Huitoto quw Tena q. shp Shipibo
inb Inga (Highland) qvc Cajamarca q. sya Saynawa
inj Inga (Jungle) qvi Imbabura Quichua zro Sápara
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Turning to the Southern sub-core, the languages in the periphery that pat-
tern with this sub-core are given below. Plots of the languages of the Southern
Andes and adjacent regions, as well as those of Patagonia, are given in Figures
10 and 11, respectively.

Languages of the Southern Andean Periphery:

chaco
Strong: Maka [mca], Vilela [vil], Wichí (Mission de la Paz dialect) [mtp]
Weak (non-core admixture): Chulupí [cag]

patagonia
Strong: Northern Alacalufan [alc_nth], Central Alacalufan [alc_cen], and
Southern Alacalufan [alc_sth], Ona [ona], Haush [ona_mtr], Tehuelche
[teh]

As in the case of the North-Central core, several languages have gone from
being weak members of the single Andean core to being strong members of
the Southern sub-core, including Wichí [mtp] and the Alacalufan languages
[alc_nth, alc_cen, alc_sth]. Chulupí [cag] has experienced the opposite fate,
and Puelche [pue] has gone from being a strong member of the area to being
excluded, while Leko [lec], Toba Takshek [tob_tks], Toba Lañagashik [tob_lng],
and Mocoví [moc] have gone from being weak members to being excluded.
All of the languages excluded under a strict interpretation of nbc scores do,
however, occupy regions near the zero log-odds line, a point we return to in the
discussion in Section 6.

As hinted above, convergence of Quechuan languages to the non-Quechuan
languages of the Southern core is suggested by the very high Southern Andean
nbc scores obtained for Bolivian Quechua [qul_quh] and Cuzco-Collao
Quechua [quz]. Other Quechuan languages have negative nbc scores for this
core, indicating that Bolivian and Cuzco-Collao Quechua have been so signifi-
cantly affected by contact with non-Quechuan Southern core languages that
their phonological inventories pattern with those of these latter languages,
rather than those of the Quechuan languages to which they are genetically
related. Santiago del Estero Quechua is the next more non-North-Central-like
Quechuan language, presumably due to the fact that its speakers migrated to
the Argentinean pampas during the latest stages of the expansion of the Inka
empire (Adelaar andMuysken, 2004). At the same time, Jaqarú [jqr], a language
belonging to the Aymaran family, still patterns solidly with Southern core lan-
guages, but resembles North-Central core languages more closely than any of
the Aymaran languages to which it is genetically related. Since Jaqarú is far to
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figure 10 Languages of the Central Andes and Circum-Andean regions (three-way nbc scores).
Quechua is abbreviated q. Dialect names are parenthesized.

axb Abipon
ayr Aymara (Central)
ayr_chl Aymara (Chilean)
ayr_muy Muylaq’ Aymara
brg Baure
cag Chulupí
cap Chipaya
caw Callawaya
cax Bésɨro
crq Chorote (Iyo’wujwa and Iyowa’ja)
inp Iñapari
jqr Jaqaru
kuz Kunza

lec Leco
lul Lule
mca Maka
moc Mocoví
mtp Wichí (Misión la Paz)
nhd Nhandeva
qul Bolivian q. (Northern and Southern)
qus Santiago del Estero q.
quy Ayacucho q.
quz Cuzco-Collao q.
tob_tks Toba (Takshek)
ure Uru
vil Vilela
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figure 11 Languages of Patagonia (three-way nbc scores)

alc_cnt Alacalufe (Central) ona Ona teh Tehuelche
alc_nth Kawesqar ona_mtr Haush teh_tsh Teushen
alc_sth Alacalufe (Southern) pue Puelche yag Yahgan
arn Mapudungun
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the north of the other Aymaran languages, and adjacent to Quechan languages
of the North-Central core, its greater similarity to these languages reflects a
history of contact with these Quechuan languages.

6 Discussion

Having demonstrated how Core and Periphery operates in exploring a particu-
lar set of hypotheses about linguistic areality, it is important to clarify a number
of properties of this method. First, Core and Periphery is not a method which
allows one to simply feed in data to an algorithm without any knowledge of
the relevant languages or regions. Core and Periphery capitalizes on special-
ists’ linguistic and non-linguistic knowledge both to generate fruitful initial
hypotheses (i.e. the core and control language sets) and to interpret the results,
by evaluating the plausibility of language contact between core and peripheral
languages with high nbc scores, and by filtering out languages whose high nbc
scores can be attributed to genetic relatedness to core languages. What Core
and Periphery provides is an intuitively straightforwardmeans to explore large
datasets for evidence of areality: it identifies features that distinctively charac-
terize given groups of languages, and offers a quantitatively explicit measure of
similarity between a language and selected sets of languages.

It is important to note that despite the methodological priority of the pro-
posed cores (i.e., they are selected first), Core and Periphery makes no claims
about the directionality of borrowing between core and periphery. There is
no reason that, in principle, peripheral languages cannot be the original his-
torical source of the segments that characterize a given phonological area. In
these respects, then, Core and Periphery is a somewhat blunt tool: it is useful
for identifying areality characterized by broad similarity among phonological
inventories, but does not indicate the sources of the segments borrowed in the
development of the phonological area.

Another crucial characteristic of Core and Periphery is that the nbc scores
it generates are gradient, rather than categorial. On the one hand, this is a
strength of the technique, since this makes it well-suited to analyzing areas
with diffuse peripheries (see below). On the other hand, the gradient nature
of nbc scores introduces a degree of arbitrariness in the choice of nbc score
to serve as a cutoff for identifying a language as either core-like or control-like
for the purposes of evaluating areality. The somewhat arbitrary nature of the
cutoff becomes evident in the nbc score cutoff of zero that we chose in this
paper to distinguish core-like from control-like languages. This cutoff is actu-
ally somewhat conservative, as can be appreciated by considering languages
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that exhibit small negative nbc scores. These turn out to be predominantly
located close to the edge of the Andean core (as defined by the 2000m con-
tour line), an unexpected result if all languages with negative nbc scores were
indeed wholly unaffected by contact with the relevant core languages. The sig-
nificant clustering of circum-Andean languages in the region of small negative
nbc scores would be explained, however, if these language were sufficiently
affected by contact with Andean languages to raise their nbc scores from their
‘pre-contact’ scores, but not quite enough to give thempositive nbc scores.17 In
short, contact with core Andean languages raises the nbc scores of the non-
core languages in the circum-Andean periphery, but in some cases, not suf-
ficiently for them to pass the zero nbc cutoff. The zero nbc cutoff is thus a
relatively stringent criterion, in that it effectively excludes languages from the
Andean core that were plausibly affected by contact with languages of said
core.

In light of the issue of diffuseness of the periphery, it is useful to consider
the strengths and weaknesses of the Core and Periphery technique in terms
of the areas it is well suited to studying. In qualitative terms, there are three
important dimensions along which linguistic areas may vary: distinctiveness,
core-homogeneity, and diffuseness. An area exhibits distinctiveness if some of
its features occur at significantly higher or lower frequencies than the larger
region of which it is a part. Distinctiveness is sometimes held to be definitional
of a linguistic area (Aikhenvald, 2006); and while distinctiveness does make
an area conspicuous, it is clear that pairwise or multilateral borrowing of
features may result in an area that does not stand out as having distinctive
feature values (Thomason, 2000). An area exhibits core-homogeneity if it is
possible to identify a relatively contiguous set of languages within the area
that are all very similar in the linguistic features being examined, either due to
common descent or to long-termmultilateral contact resulting in convergence
to a shared linguistic profile. Finally, an area exhibits diffuseness if it has
a fuzzy boundary, i.e. a sizeable zone surrounding the core over which the
concentration of core features gradually tapers off.

In light of these parameters, we can first observe that, since the nbc scores
generated by the Core and Periphery technique are continuous, it is well suited
for the study of linguistic areas with diffuse boundaries. However, it should be

17 To identify the effects of contact in instances like this, it would be useful to have a
measure of the degree towhich a language diverges from related languages, and converges
to neighboring languages to which it is not genetically related. The Relaxed Admixture
Model, discussed in Chang andMichael (this issue), essentially provides ameasure of this
sort.
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noted that non-diffuse boundaries pose no problems for the method, and that
such areas are amenable to being characterized by nbc score cutoffs that arise
naturally from the data, rather than being completely arbitrary.

On the other hand, Core and Periphery is significantly affected by the degree
of homogeneity of a posited core. An important lesson from comparing the sin-
gle core results to thedual core results is that combining two relatively homoge-
neous cores into a single, less homogeneous core can reduce the efficacy of the
nbc in identifying what are probably legitimate members of linguistic areas.
In the single core analysis, we found that ejective and aspirated consonants
had positive deltas; and that short mid vowels, the retroflex affricate, and the
post-alveolar fricative had negative deltas. Thus, the profile of the unified core
resembled that of the Southern coremore than theNorthern-Central core. This
explains the exclusion of some languages in the foothills and lowland regions
proximal to the northern and central Andes from the Andean periphery: lan-
guages in these regions converged not to the profile of the unified core, but to
that of the Northern-Central core, where ejective consonants, aspirated con-
sonants, and mid vowels are uncommon, but the retroflex affricate and the
post-alveolar fricative are common.

Finally, it is clear that Core and Periphery will only serve to identify distinc-
tive areas, since in order for nbc to be able to classify languages as core-like or
control-like, core and control languages have to be sufficiently different. How-
ever, as Chang and Michael (this issue) show with a different technique, there
do in fact exist ‘mosaic areas’ in which language contact has led to borrow-
ing among languages, without resulting in a core with distinctive phonemes
or even a high degree of homogeneity.

TheCore andPeriphery technique is thus effective for identifying anddelim-
iting linguistic areas that are distinctive and relatively core-homogeneous, and
easily handles diffuse areas (though non-diffuseness poses no difficulties). And
as we saw, the two Andean subcores, along with their respective proximal
circum-Andean regions, each constitute distinctive, diffuse, and relatively core-
homogeneous phonological areas.

Note that there is no intrinsic geographical or scale-based limitation to the
technique. Due the nature of the dataset and the empirical questions that ani-
mated our interest in areality, this paper examined areality within a continent,
selecting a core in a subregion of the continent and a set of control languages
in another sub-region of the continent. These practical considerations are inci-
dental, however, and nothing other than the rarity of suitable datasets prevents
Core andPeriphery tobe applied to considerably larger regions (e.g.,with entire
continents serving as cores), or using languages fromconsiderablymoredistant
regions (e.g., on the opposite sides of major oceans) as control languages.
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7 Conclusion

We have presented in this paper a method for exploring linguistic areality that
makes use of a naive Bayes classifier to quantify the similarity between candi-
date members of a linguistic area and a posited set of ‘core’ members of the
area, with respect to the features that distinguish those core languages from
a set of ‘control’ languages deemed extremely unlikely to be members of the
area being explored. Versions of this ‘Core andPeriphery’ techniqueweredevel-
oped for both single core and multiple core analyses and applied to a concrete
empirical test case: phonological areality in the South American Andes and
surrounding lowland areas. This application resulted in the identification of
several areas in which non-Andean languages show convergence with Andean
languages generally (in the case of the single core analysis) and more locally
to Southern Andean and North-Central Andean subcores (in the case of the
dual core analysis). These results confirm that Core and Periphery is a useful
exploratory tool: they are generally plausible in light of our knowledge of con-
tact between Andean and neighboring non-Andean societies, yet at the same
time identify instances of convergence which have previously gone unnoticed.

This initial application of Core and Periphery suggests a number of direc-
tions for the future development of this approach. First, since the similarity
measure used by Core and Periphery relies on abstract features that impose
few restrictions on the kind of linguistic traits that serve as the basis of clas-
sification, this method can be extended to morphological, syntactic, or even
pragmatic traits, as long as clumps of non-independent traits are small relative
to the total number of traits. The application of Core and Periphery to non-
phonological datasets is an obvious next step.

Second, as discussed in Section 4.5, statistical non-independence between
phonological segments frustrates attempts to interpret nbc scores as simple
probabilities of core vs. control group membership, and consequently ham-
strings our ability to employ Core and Periphery as a quantitative test for are-
ality. Though this property does not pose problems for its use as an exploratory
tool, the power of Core and Periphery would be significantly enhanced by
directly tackling the non-independence problem, suggesting another area for
future research.

The spatial dimension of Core and Periphery, which at this point manifests
itself only informally in linguists’ identificationof core andperiphery areas, and
through qualitative observations about the spatial distribution of nbc scores,
is another area inwhich the technique could be usefully enriched. The analysis
of nbc scores can be coupled with spatial statistical measures, for example,
to yield a quantitative perspective on the gradience of fuzzy-edged linguistic
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areas. And rather than characterizing distance solely in idealized Euclidean
terms, it could be cast in more realistic movement-cost measures, reflecting
an understanding of spacemore finely attuned to human interactions with the
environment.
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Appendix a: Inventory Regularization Rules

We regularize phonological inventories in a procedural way, with a series of
replacement rules, as listed below. With consonants, we replace every sound
on the left with the sound on the right, unless the sound on the right is already
in the inventory.

lj → ʎ
ʝ → ʒ
ʋ → β

With vowels, the procedure is similar, but more elaborate. As with consonants,
we try to replace each sound on the left with the sound on the right, but we also
try to replace any phoneme that contains the sound on the left by replacing the
matched character with the sound on the right. For example, the rule ʉ→ ɨ will
cause us also to try ʉi→ ɨi, ʉː→ ɨː, ʉ̃→ 󰀰,̃ etc. These replacements are not carried
out if the sound on the right already exists in the inventory, either by itself or
as part of another phoneme. The vowel replacement rules are as follows.

ʉ → ɨ
ɯ → ɨ
ə → ɨ
ʌ → ɨ
ʊ → u
ɔ → o
ɤ → o
ɪ → i
e → i
ɛ → e
ɑ → a

These rules are applied in order. For example, if ʉ has been replaced with ɨ via
the first rule, it is then no longer possible for ɯ to be replaced with ɨ via the
second rule.

Finally, if the language has nasal harmony, we add the nasal version of each
oral vowel to the inventory.
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Appendix b: Naive Bayes Classifier

b.1 Model and Data
A naive Bayes classifier is underpinned by a probabilistic generative model.
What follows is a formal description of the model and data, as used in our
analyses. The data can be viewed as having three parts:

– An N × L binary feature matrix X, where Xnl denotes the absence (0) or
presence (1) of feature l in the phonological inventory of training language
n. N is the number of training languages and L is the number of features.

– A set of labels for each training language Y = (Y1, …, YN), where Yn ∈
{1, …,K} denotes the class of language n. These labels are supplied by the
analyst before analysis begins, as is the total number of classes K.

– A set of binary features for the test language X0 = (X01, …, X0L), where
X0l denotes the absence (0) or presence (1) of feature l in the phonological
inventory of the test language.

The generative procedure that underlies the data is summarized as follows.

– For each class k and each feature l, generate a feature frequency via a beta
distribution: θkl ∼ Beta(𝛼, β).

– For each language, pick a label from a categorical distribution: Y = k with
probability πk. This is done for all training languages and the test language
as well, but the outcome is observed for just the training languages.

– For each language n, generate each feature l via a weighted coin toss: Xnl ∼
Bernoulli(θYnl). The subscript on θ refers to the class denoted byYn (the class
of language n) and the feature denoted by l.

We posit that θkl is generated by a beta distribution for mathematical con-
venience: the beta distribution is the conjugate prior distribution (Raiffa and
Schlaifer, 1961) of the Bernoulli distribution. Also favoring this choice is the fact
that, empirically, feature frequencies seem to form such a distribution.

In our analyses, we set πk = 1/K, but in other contexts it may make more
sense to set πk = Nk/N, where Nk is the number of training languages in class
k. Settings for 𝛼 and β are discussed in Appendix b.3.
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b.2 Inference
The purpose of the model in Appendix b.1 is to make it possible to infer the
class of the test language. This entails computing pk, the probability that the
test language is in each class k, conditioned on the data. In standard notation,
this is ℙ(Y0 = k | X0, X, Y). By Bayes’ Theorem,

ℙ(Y0 = k | X0, X, Y) = ℙ(X0 | Y0 = k, X, Y) ℙ(Y0 = k | X, Y)
ℙ(X0 | X, Y) .

Writing f(k) for ℙ(X0 | Y0 = k, X, Y), this expands to

ℙ(Y0 = k | X0, X, Y) =
f(k)πk

f(1)π1 + ⋯ + f(K)πK
.

Since the L features of the test language are generated independently, condi-
tioned on the class of the test language, we have f(k) = ∏L

l=1 fl(k), where
fl(k) = ℙ(X0l | Y0 = k, X⋅l, Y) and X⋅l denotes elements of the lth column of
X. Then,

fl(k) = ℙ(X0l, X⋅l | Y0 = k, Y)
ℙ(X⋅l | Y) .

Note thatXml andXnl are fully independent if languagem and languagenbelong
to different classes. Thus the denominator factorizes into

ℙ(X⋅l | Y) =
K

∏
j=1

ℙ(XIjl | Y),

where Ij denotes the set of test languages belonging to class j, and XIjl denotes
the entries indexed by Ij in the lth column of X. The numerator is identical,
except in the factor corresponding to class k. After casting out factors that are
identical in the top and bottom, we are left with

fl(k) =
ℙ(X0l, XIkl | Y0 = k, Y)

ℙ(XIkl | Y) .
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Writing fθkl
(z) for the density function of θkl ∼ Beta(𝛼, β), this expands to

fl(k) =
∫1
0 ℙ(X0l, XIkl | θkl = z, Y0 = k, Y)fθkl

(z)dz

∫1
0 ℙ(XIkl | θkl = z, Y)fθkl

(z)dz

=
∫1
0 [ ∏n∈{0}∪Ik

zXnl(1 − z)1−Xnl]zu�(1 − z)βdz

∫1
0 [ ∏n∈Ik

zXnl(1 − z)1−Xnl]zu�(1 − z)βdz

=
∫1
0 zu�+Nkl+X0l(1 − z)β+Nk−Nkl+1−X0ldz

∫1
0 zu�+Nkl(1 − z)β+Nk−Nkldz

,

where Nkl is the number of training languages in class kwith feature l and Nk is
the total number of training languages in class k. We state the results of these
integrals in terms of gamma functions before simplifying:

fl(k) =
Γ(𝛼 + Nkl + X0l)Γ(β + Nk − Nkl + 1 − X0l)/Γ(𝛼 + β + Nk + 1)

Γ(𝛼 + Nkl)Γ(β + Nk − Nkl)/Γ(𝛼 + β + Nk)

= { (𝛼 + Nkl)/(𝛼 + β + Nk) if X0l = 1,
(β + Nk − Nkl)/(𝛼 + β + Nk) if X0l = 0.

b.3 Setting Hyperparameters
In Section 4.2 we suggested setting 𝛼 = β = 1/2, which corresponds to
drawing feature frequencies via θ ∼ Beta(1/2, 1/2). It would be better to
find values for 𝛼 and β so that Beta(𝛼, β) reflects how feature frequencies are
actually distributed. Though feature frequencies are hidden variables, we can
estimate them via θ̂l = Nl/N, where Nl is the number of languages in the
entire dataset with feature l, and N is the total number of languages. From
these estimates we compute a sample mean μ = ∑L

l=1 θ̂l/L and a sample
variance σ2 = ∑L

l=1(θ̂l − μ)2/L. We set these equal to themean and variance of
Beta(𝛼, β):

μ = 𝛼
𝛼 + β ,

σ2 =
𝛼β

(𝛼 + β)2(𝛼 + β + 1) ,
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and solve for 𝛼 and β to obtain

𝛼 =
μ2(1 − μ)

σ2
− μ,

β =
μ(1 − μ)2

σ2
− 1 + μ.

In our analyses, we use this procedure to estimate 𝛼 and β before culling rare
features, and get 𝛼 ≈ 0. 071 and β ≈ 0. 755.

One problem with the foregoing is that there may exist many features that
we do not observe. Our dataset contains a long tail of low-frequency features,
and extrapolating from this, it is not unreasonable to suppose that theremaybe
a larger, or even infinite, number of features that remain unobserved, due to the
fact that their feature frequencies are extremely low. A naive Bayes classifier,
despiteworkingwell in practice, is simply unable to account for this possibility.
For a new model that explicitly addresses this issue, please see Section 7 of
Thibaux and Jordan (2007).

Appendix c: Classification Results

c.1 nbc Scores for Single Core Analysis
This section lists each language along with its score from the single core analy-
sis in Section 5.1. Languages are given by language codes, which can be looked
up in Appendix d. They are ordered by the score, which represents how high-
land-like the language is. Training languages (those that define the classes on
which the classifier was trained) aremarkedwith a (Andean core) or c (control
class).

a ayr 56.64
a caw 54.43
a ayr_chl 49.00
a ayr_muy 46.82
a cap 46.43
a jqr 44.05
a qul 43.78
a quz 43.01
a qvn_caj 26.62
c teh 26.48

a qwa 23.87
ame 22.61

a qvn_tar 22.53
a qxn 21.24
a ure 20.55
a qub 19.97
a qxw 19.32
a qxl 18.30

inj 16.69
a quk 16.25

a inb 16.16
a quw 15.77

quf 15.71
a qvc 14.06
a quy 12.83

qvo 12.30
qvs 11.42
qus 10.64

c ona_mtr 10.31
c ona 10.02
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ccc 9.87
a qvi 9.59

mca 9.51
a kuz 9.39
c teh_tsh 9.18

cht 7.30
cbi 6.93
vil 6.74

c pue 6.21
c yaw 5.79

cag 5.72
c alc_sth 5.69
c alc_nth 5.47

tob_tks 5.11
kbh 5.03

c alc_cnt 4.76
mtp 3.61
jeb 3.53
lec 3.35

c fun 3.20
cpc 3.06
cbu 2.99
moc 1.97
cpu 1.51
arl 1.18
tob_lng 0.54
ycn 0.26
bae 0.06
cpb -0.29
lul -0.31
gae -0.97
plg -1.10
ign -1.41
cav -1.56
rey -1.85
trn -1.91
rgr -1.94
bwi_cen -1.99
cox -2.01
pno -2.43

anb -2.56
zro -2.56
crq -2.57
gum -2.63
myr -2.86
dny -3.01
mcb -3.35
yvt -4.18
aca -4.37
tna -4.53
omg -4.58
kvn -4.73

c kgp -4.90
sya -5.33

c arn -5.38
aro -5.72
cot -6.36

c wap -6.80
pbb -6.82
ese_per -6.88
cui -7.02
kpc -7.03
knt -7.17
ywn -7.17
bwi_rng -7.39
kav -8.03
shp -8.12

c ter -8.15
ese_bol -8.20
pad -8.26
yrl -8.32
omc -8.56
cni -8.56
sha_ywn -8.58
ktx -8.64

c hix -8.78
mzp -8.81
cod -9.12
not -9.24
tit -9.28

c tpy -9.70
kbc -9.93
mbn -10.26
ito -10.38
pid -10.39
pbg -10.94
mpq -11.49
cul -11.93

c wba -11.93
brg -11.95
pib -12.09
guo -12.09

c xir -12.30
ura -12.45

c pab -12.49
kaq -12.54
cbt -12.63

c prr -12.66
c waw -12.73
c yag -12.77

mcf -13.06
sae -13.37
prq -13.48
iqu -13.51
yuz -14.24
boa -14.41
trr -14.45

c txi -14.53
cbb -14.60

c kzw_dzu -14.79
c aap -14.80

mpd -15.13
tuf -15.14

c arw -15.36
cbr -15.53
pcp -16.13
axb -16.13
pio -16.24
jaa_jmm -16.51

c aoc_tar -16.52
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srq -16.79
cbv -17.12

c car_ven -17.19
c car_esr -17.19

pav -17.21
orw -17.51

c myp -17.68
xor -17.90
yup_mac -18.86

c pbh -19.21
mbp -19.29

c kbb -19.34
c guc -19.57

nuc -19.61
chb -19.68
yup_irp -19.72

c yar -20.06
jaa_jrw -20.28

c mbc -20.30
c guu -20.43

cao -20.76
arh -20.98

c ake -21.01
bmr -21.15
jru -21.20
cbd -21.76
hto -22.36
swx -22.83

c aoc_are -23.14
noj -23.17

c wca -23.37
umo -23.39
mcg -23.45
pev -23.45

c bor -23.52
c car_frg -23.55
c atr -24.28
c mch -24.66

yui -24.71
des -24.93

cub -25.20
ore -26.22
huu -26.28
acu -26.68

c tri -26.73
unk -27.48

c asu -27.50
tav -27.52
tae -27.72
mts -27.81
jiv -27.89
bsn -28.21
pyn -28.59

c ako -28.68
c pak -28.96

cbs -29.47
c way -29.54

psx -30.49
adc -30.65
mcd -30.70
agr -31.13
yme -31.18
hub -31.90

c gub -32.77
ltn -33.03

c tqb -33.41
boa_mrn -33.60
kwi -34.37

c xiy -35.01
yaa -35.28
tba -35.30
slc -35.34

c gvp -36.56
wmd -36.69
amc -36.79
gta -36.90
con -36.96

c mmh -37.22
ash -37.28
gqn -38.18

nab_kth -38.80
c wau -38.90

ayo -38.91
cto -40.18

c plu -41.24
cof -42.73
oca -43.62
bdc -44.02

c jur -44.26
c mav -45.22
c guh -45.27
c sru -45.48
c api -45.76
c kpj -46.09

skf -46.43
jbt -46.58
cmi -47.42
yuq -47.56

c awt -47.63
pui -47.63
auc -47.90
emp -47.95

c kui -48.03
mpu -48.63
tnc -49.11
ano -49.16
kxo -49.68
inp -49.89

c tpn -49.91
c kyr -49.99

cax -50.20
kog -51.20
gvc -52.05

c yae -52.05
c bkq_wst -52.31

tpr -52.62
noa -52.79

c apy -52.83
c xet -52.83

gyr -52.90
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mbr -52.93
irn -52.97
gvo -53.33
yad -53.44

c avv -53.45
c xsu -53.56

xwa -53.68
c xav -53.72
c awe -53.76
c zkp -53.83

aqz -53.85
c urb -54.03
c taf -54.08

coe -54.12
cas_cov -54.18

c opy -54.20
c myu -54.21
c mbl -54.33

tuo -54.60
gui_chn -54.70

c oym_jri -55.42
gug -55.44
cbg -55.50
axg -55.75
cyb -55.88

c kqq -56.55
arr -56.60

c pta -56.70
c kyz -56.88

tpj -57.16

c pto -57.20
mot -57.20
tca -57.29

c guq -57.35
c gvj -57.36

snn -57.38
amr -57.50

c asn -57.56
c bkq_est -57.59

nhd -57.66
c xri -57.79

apu -57.85
gui_izo -58.25

c gun -58.38
ceg -58.91
cbc -58.93
sri -58.93
tue -58.93

c kay -59.34
c xer -59.60

jua -59.66
myy -59.84
ark -59.87
kwa -60.01
sey -60.27

c kgk -60.50
c ram -60.83
c suy -61.45

sja -61.54
bao -61.74

mbj -61.78
c rkb -61.88

adw -61.92
pah -61.92
urz -61.92
pir -62.13

c oym_amp -62.45
cas_msa -62.59
cas_tsi -62.59

c yau -63.36
c apn -63.54

ktn -64.60
jup -64.99

c yrm_pac -65.21
c suy_tap -65.29
c txu -65.38
c eme -66.96
c shb -67.99
c xra -68.02
c kre -69.16
c qpt -70.17

wyr -70.53
yab -70.90

c xok -77.43
c wca_yma -82.81
c wca_yae -82.81
c guu_ven -82.81
c xsu_kol -83.10
c guu_par -84.53

c.2 nbc Scores for Dual Core Analysis
This section lists each language alongwith its scores from the dual core analysis
in Section 5.2. Languages are given by language codes, which can be looked up
in Appendix d. The three scores represent the resemblence that a language has
to the Northern-Central Andean core, the Southern Andean core, and the con-
trol class, respectively.18 The languages are ordered by the third score. Training

18 The scores s1, s2, s3 are the log-odds of a language belonging to class 1, 2, or 3. A log-odds
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languages (those that define the classes onwhich the classifier was trained) are
marked with n (Northern-Central Andean core), s (Southern Andean core), or
c (control class).

s ayr -45.29 45.29 -65.21
s caw -41.16 41.16 -60.77
s ayr_chl -42.32 42.32 -55.98
s ayr_muy -42.00 42.00 -53.69
s cap -55.78 53.36 -53.45
s quz -50.27 50.04 -51.60
s qul -40.66 40.66 -49.86
s jqr -29.38 29.38 -47.34
n qvn_caj 24.18 -24.18 -30.82

ame 27.84 -28.31 -28.82
n qwa 20.76 -20.76 -28.33
n qvn_tar 26.55 -26.75 -28.24
n qxn 18.84 -18.84 -25.03
n qxw 23.49 -23.74 -24.98
n quw 23.87 -34.08 -23.87
n inb 23.60 -31.38 -23.60
n qub 18.20 -18.20 -23.51
n quk 22.89 -25.47 -22.97
s ure -36.94 22.94 -22.94
c teh -25.02 22.79 -22.91

inj 21.93 -22.75 -22.51
quf 21.39 -23.49 -21.52
qvo 20.70 -36.27 -20.70
qvs 17.92 -26.48 -17.92

n qvc 17.24 -18.31 -17.65
mca -42.73 16.55 -16.55

n qvi 16.34 -23.52 -16.34
n quy 16.05 -17.97 -16.21
s kuz -36.79 14.28 -14.28
n qxl 13.04 -16.03 -13.10
c yaw 12.99 -24.19 -12.99
c ona -34.18 12.68 -12.68

cht 10.34 -18.30 -10.34
qus 8.45 -16.40 -8.45
cbi 8.15 -22.65 -8.15
jeb 7.90 -21.03 -7.90

c ona_mtr -20.34 6.55 -6.55
kbh 6.10 -24.72 -6.10

c alc_sth -25.24 5.98 -5.98
c alc_cnt -25.50 5.88 -5.88
c alc_nth -22.20 4.91 -4.91

mtp -23.74 3.70 -3.70
pno 3.44 -21.13 -3.44
vil -27.13 2.80 -2.80
cbu 2.49 -14.70 -2.49
cag -20.39 1.61 -1.61
anb 1.38 -20.59 -1.38
zro 1.38 -20.59 -1.38
sya 1.11 -22.64 -1.11
gae 0.83 -25.04 -0.83
myr 0.33 -28.03 -0.33
kav 0.29 -26.89 -0.29

c wap -0.15 -29.78 0.15
knt -0.21 -23.27 0.21
ywn -0.21 -23.27 0.21
ccc -0.49 -4.98 0.46
yvt -0.86 -25.79 0.86
shp -0.86 -21.71 0.86
omg -0.88 -20.44 0.88
lec -22.86 -1.17 1.17
ign -1.28 -16.96 1.28

c pue -15.11 -1.90 1.90
bwi_cen -2.12 -18.14 2.12
cav -2.31 -18.06 2.31

sk is related to the probability pk of a language belonging to class k via the formula
sk = log pk/(1 − pk), as explained in Section 4.4.
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c teh_tsh -7.68 -2.32 2.32
lul -22.02 -2.46 2.46
sha_ywn -2.81 -22.91 2.81
rey -3.24 -16.81 3.24
tna -3.44 -23.21 3.44
bae -3.59 -12.42 3.59
arl -3.79 -12.02 3.79

c hix -4.41 -30.02 4.41
ktx -4.44 -24.02 4.44
plg -4.56 -18.15 4.56
cpc -4.96 -5.79 4.59
tob_tks -5.61 -8.50 5.56

c kgp -5.66 -19.07 5.66
aro -6.18 -28.09 6.18
dny -6.43 -14.17 6.43
gum -7.20 -17.06 7.20
cod -7.31 -21.88 7.31
kaq -7.50 -24.97 7.50

c fun -12.09 -7.55 7.54
crq -19.26 -7.60 7.60
cpu -12.81 -7.75 7.75

c arn -7.97 -18.26 7.97
cbt -7.98 -26.99 7.98
ycn -8.08 -10.97 8.03
bwi_rng -8.12 -25.20 8.12
cpb -14.13 -8.32 8.31
tob_lng -8.36 -17.21 8.36
cox -9.06 -17.94 9.06
ura -9.27 -28.41 9.27
pbb -9.44 -13.17 9.42
mcb -9.99 -18.09 9.99
kvn -10.05 -18.10 10.05
moc -10.47 -12.14 10.30
mpq -10.32 -29.60 10.32
pid -37.96 -10.53 10.53
yrl -10.62 -25.44 10.62
kpc -10.76 -20.44 10.76

c xir -11.28 -30.52 11.28
mcf -11.32 -30.34 11.32
iqu -11.33 -24.25 11.33

trn -13.74 -11.86 11.71
c yag -11.78 -27.24 11.78

rgr -11.87 -19.02 11.87
pad -12.05 -27.20 12.05

c waw -12.32 -28.60 12.32
ese_per -12.39 -18.92 12.38

c prr -12.88 -26.03 12.88
guo -13.08 -30.49 13.08
cui -13.25 -18.93 13.25
nuc -13.56 -30.79 13.56
boa -36.86 -13.92 13.92
ese_bol -13.94 -19.80 13.94
cbv -13.97 -36.46 13.97

c kzw_dzu -14.00 -34.23 14.00
pcp -14.47 -28.89 14.47
brg -15.16 -24.92 15.16

c myp -15.22 -29.55 15.22
c txi -15.22 -30.75 15.22

mpd -15.36 -28.59 15.36
yuz -15.45 -31.66 15.45
cot -16.17 -16.44 15.61
pio -15.97 -30.43 15.97

c pab -16.02 -23.31 16.02
not -16.21 -23.36 16.21
cni -16.33 -18.74 16.24

c aap -16.26 -27.32 16.26
kbc -16.37 -25.45 16.37
jaa_jmm -16.42 -32.83 16.42
trr -16.60 -24.26 16.60
mbp -16.68 -45.01 16.68
aca -17.16 -19.45 17.06
mzp -25.54 -17.11 17.11
sae -17.48 -24.26 17.48
omc -17.67 -19.32 17.49
mbn -18.33 -18.13 17.53
srq -17.60 -28.68 17.60
pbg -17.76 -22.34 17.75
pyn -17.88 -43.67 17.88

c wba -17.92 -23.54 17.91
cao -17.98 -31.90 17.98
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c ter -18.89 -18.55 18.02
pib -18.64 -23.23 18.63
ito -28.29 -18.63 18.63
mts -18.94 -42.01 18.94

c arw -19.01 -28.63 19.01
cbb -19.01 -26.34 19.01
jiv -19.16 -41.16 19.16
swx -19.63 -45.96 19.63

c car_ven -19.67 -28.90 19.67
c car_esr -19.67 -28.90 19.67

cbd -19.78 -42.81 19.78
jaa_jrw -19.97 -31.58 19.97
cul -20.35 -21.23 20.00
yup_mac -20.02 -34.23 20.02
prq -20.09 -24.65 20.08
adc -20.29 -45.59 20.29
cbr -20.35 -27.16 20.34
bmr -20.39 -42.26 20.39
axb -26.75 -20.90 20.90
mcd -20.97 -44.99 20.97

c tpy -24.03 -21.06 21.01
acu -21.02 -36.99 21.02
tuf -21.37 -26.68 21.36
orw -21.62 -27.55 21.62
noj -21.68 -46.11 21.68

c yar -21.74 -31.88 21.74
umo -22.10 -37.46 22.10
arh -22.24 -43.66 22.24

c guc -22.25 -31.75 22.25
chb -22.44 -31.45 22.44
xor -22.62 -28.80 22.62
yup_irp -22.66 -31.03 22.66

c pbh -22.73 -31.06 22.73
tit -22.81 -25.24 22.73
hto -22.92 -42.98 22.92
cbs -23.12 -44.17 23.12

c guu -23.22 -31.05 23.22
des -23.55 -40.53 23.55
huu -23.74 -43.91 23.74

c kbb -23.77 -31.12 23.77

pav -23.95 -27.20 23.91
yui -23.95 -41.15 23.95
jru -24.20 -32.53 24.20
cub -24.33 -38.01 24.33

c aoc_tar -28.70 -24.77 24.75
agr -24.91 -42.67 24.91

c bor -25.29 -42.71 25.29
hub -25.53 -44.19 25.53

c wca -25.62 -33.20 25.61
tav -26.19 -43.13 26.19
bsn -26.28 -43.87 26.28
ore -26.91 -43.77 26.91

c aoc_are -27.27 -33.21 27.27
mcg -27.34 -34.43 27.34
pev -27.34 -34.43 27.34
psx -27.45 -44.53 27.45

c car_frg -27.72 -33.61 27.72
c mbc -31.93 -27.76 27.74

kwi -27.85 -49.32 27.85
c xiy -28.16 -52.07 28.16
c ake -32.37 -28.69 28.66

yaa -28.94 -46.74 28.94
yme -29.39 -40.98 29.39

c way -29.83 -38.00 29.83
c mch -34.08 -31.51 31.43
c atr -31.64 -39.83 31.64

unk -32.02 -38.89 32.02
c mmh -32.07 -47.31 32.07
c tri -35.13 -33.47 33.30

amc -33.31 -45.99 33.31
c asu -33.56 -35.73 33.45

cto -66.22 -34.05 34.05
c pak -34.47 -36.39 34.33
c ako -38.34 -34.62 34.59

tae -35.89 -35.33 34.87
ltn -35.25 -41.60 35.25

c wau -35.27 -47.50 35.27
slc -35.43 -51.69 35.43
tba -36.37 -47.75 36.37
gta -37.40 -52.84 37.40
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c gvp -38.03 -43.63 38.03
c gub -38.05 -43.29 38.04
c tqb -38.85 -44.80 38.85

wmd -43.80 -39.01 39.01
gqn -39.24 -48.03 39.24
ayo -39.39 -55.43 39.39
boa_mrn -39.75 -47.66 39.75

c plu -40.42 -56.53 40.42
nab_kth -40.48 -46.57 40.47
oca -40.56 -58.98 40.56
ash -40.70 -47.55 40.70

c jur -41.25 -61.61 41.25
c kpj -41.86 -54.95 41.86
c sru -42.17 -63.64 42.17

cof -43.34 -54.45 43.34
skf -43.53 -56.78 43.53
con -43.87 -47.34 43.84
jbt -44.94 -56.37 44.94
cmi -45.96 -58.20 45.96
emp -47.04 -61.87 47.04
mpu -47.10 -55.48 47.10
bdc -47.25 -50.79 47.22
mbr -47.34 -65.65 47.34

c kui -47.63 -55.46 47.63
kxo -47.72 -55.82 47.72

c awt -48.09 -57.68 48.09
c api -48.47 -53.34 48.46
c kyr -48.65 -63.49 48.65

pui -48.77 -52.89 48.76
kog -49.02 -67.79 49.02
cax -49.08 -57.55 49.08
tnc -49.12 -57.84 49.12

c tpn -49.61 -58.51 49.61
axg -49.98 -71.80 49.98

c mav -51.54 -50.38 50.11
auc -50.32 -57.10 50.31

c zkp -50.40 -61.99 50.40
c bkq_wst -50.66 -67.73 50.66

cyb -50.99 -65.58 50.99
gvo -51.05 -65.35 51.05

c guh -52.00 -53.51 51.80
yad -51.85 -60.52 51.85
xwa -52.01 -61.68 52.01

c bkq_est -52.03 -74.93 52.03
ano -52.20 -56.54 52.19

c myu -52.33 -66.92 52.33
c apy -52.43 -62.84 52.43

tca -52.43 -72.54 52.43
c xsu -52.55 -58.74 52.55

mot -53.33 -65.25 53.33
c opy -53.34 -67.77 53.34
c xet -53.55 -61.64 53.55
c mbl -54.18 -58.67 54.17
c kqq -54.25 -71.82 54.25
c guq -54.26 -74.69 54.26

inp -56.84 -54.50 54.41
c xav -54.71 -63.45 54.71

yuq -55.70 -55.35 54.82
c avv -54.84 -59.42 54.83

cbc -54.90 -70.63 54.90
sri -54.90 -70.63 54.90
tue -54.90 -70.63 54.90
myy -55.24 -70.71 55.24
kwa -55.39 -70.83 55.39
cas_cov -61.73 -55.76 55.75
gui_chn -55.81 -59.87 55.80
gvc -55.88 -59.12 55.84
gyr -56.35 -58.20 56.20
ceg -56.25 -77.41 56.25

c xer -56.31 -71.12 56.31
c awe -56.40 -59.39 56.35
c xri -56.54 -60.91 56.53

cbg -62.13 -56.61 56.61
tpr -60.40 -56.66 56.63
arr -56.69 -65.84 56.69

c yae -60.98 -57.06 57.04
c rkb -57.14 -72.04 57.14

bao -57.14 -72.61 57.14
c urb -57.36 -60.36 57.31

amr -64.58 -57.36 57.35
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c taf -57.70 -59.19 57.50
coe -58.70 -57.96 57.57
tpj -57.71 -64.85 57.71
aqz -58.29 -58.89 57.85
noa -58.06 -60.64 57.99
mbj -58.08 -73.86 58.08
gug -58.38 -60.05 58.21
gui_izo -58.37 -61.00 58.30
nhd -58.38 -67.36 58.38

c pto -58.51 -68.83 58.51
c pta -58.58 -63.17 58.57

tuo -58.74 -60.79 58.61
snn -58.63 -72.48 58.63
irn -59.03 -61.29 58.94
apu -59.31 -60.22 58.97

c kgk -59.24 -68.07 59.24
c oym_jri -59.94 -60.51 59.49
c suy -59.58 -68.83 59.58
c ram -59.64 -65.41 59.63

ark -59.91 -65.28 59.91
jua -59.95 -68.53 59.95

c kyz -60.00 -67.60 60.00
c asn -60.05 -66.61 60.05

pir -60.30 -72.99 60.30
c gun -60.57 -63.67 60.52
c gvj -60.85 -62.65 60.70
c yau -61.85 -68.79 61.85
c txu -61.93 -79.05 61.93

sey -61.94 -70.51 61.94
c apn -62.30 -68.13 62.30

cas_msa -69.05 -62.58 62.58
cas_tsi -69.05 -62.58 62.58

c kay -63.05 -64.04 62.73
sja -71.23 -63.63 63.63
adw -63.87 -65.53 63.70
pah -63.87 -65.53 63.70
urz -63.87 -65.53 63.70

c xra -70.88 -64.04 64.04
c suy_tap -64.23 -68.97 64.22
c yrm_pac -66.87 -64.51 64.42

ktn -67.05 -65.20 65.05
yab -65.10 -78.96 65.10

c oym_amp -65.82 -65.94 65.18
c eme -65.98 -81.60 65.98

jup -66.41 -70.51 66.39
c shb -70.88 -66.59 66.58
c kre -68.99 -72.93 68.97
c qpt -69.42 -73.10 69.40

wyr -73.40 -71.49 71.35
c xok -76.23 -77.24 75.92
c xsu_kol -84.37 -77.31 77.31
c wca_yma -84.37 -78.15 78.15
c wca_yae -84.37 -78.15 78.15
c guu_ven -84.37 -78.15 78.15
c guu_par -84.10 -81.43 81.36

Appendix d: Language Codes

This section lists the language codes used in this paper in alphabetical order.
The vast majority of these codes are standard iso-639 language codes, but they
have been supplemented where necessary by three-letter extensions of related
languages or, in a small number of cases, wholly new codes. Note that the use of
a three-letter extension does not constitute a claim that the variety in question
is a dialect of the variety denoted by the first three letters, which may not
denote anything at all (cf. [alc], for example: no single ‘Alacalufan’ language
exists).
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aap Arára, Pará
aca Achagua
acu Achuar-Shiwiar
adc Arara do Acre
adw Amundava
agr Aguaruna
ake Ingarikó
ako Akurio
alc_cnt Alacalufe (Central)
alc_nth Kawesqar
alc_sth Alacalufe (Southern)
amc Amahuaca
ame Yánesha
amr Amarakaeri
anb Andoa
ano Andoke
aoc_are Pemon (Arekuna dialect)
aoc_tar Pemon (Tarepang dia-

lect)
api Apiaká
apn Apinayé
apu Apurinã
apy Apalaí
aqz Akuntsú
arh Ika
ark Arikapú
arl Arabela
arn Mapudungun
aro Araona
arr Karo
arw Lokono
ash Aʔɨwa
asn Asurini do Xingú
asu Asuriní do Tocantins
atr Waimiri-Atroarí
auc Waorani
avv Avá-Canoeiro
awe Awetí
awt Araweté
axb Abipon

axg Arára do Mato Grosso
ayo Ayoreo
ayr Aymara (Central dialect)
ayr_chl Aymara (Chilean dialect)
ayr_muy Muylaq’ Aymara
bae Baré
bao Waimaha
bdc Emberá-Baudó
bkq_est Bakairí (Eastern dialect)
bkq_wst Bakairí (Western dialect)
bmr Muinane
boa Bora
boa_mrn Miraña
bor Borôro
brg Baure
bsn Barasana-Eduria
bwi_cen Baniwa (Central)
bwi_rng Baniwa (Rio Negro)
cag Chulupí
cao Chácobo
cap Chipaya
car_esr Carib (Suriname dialect)
car_frg Carib (French Guiana

dialect)
car_ven Carib (Venezuela dialect)
cas_cov Mosetén de Covendo
cas_msa Mosetén de Santa Ana
cas_tsi Tsimané
cav Cavineña
caw Callawaya
cax Bésɨro
cbb Cabiyarí
cbc Karapanã
cbd Carijona
cbg Chimila
cbi Cha’palaa
cbr Cashibo-Cacataibo
cbs Kashinawa
cbt Shawi
cbu Candoshi-Shapra
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cbv Kakua
ccc Chamicuro
ceg Chamacoco
chb Muisca
cht Cholón
cmi Emberá-Chamí
cni Asháninka
cod Kokama-Kokamilla
coe Koreguaje
cof Tsáfiki
con Cofán
cot Caquinte
cox Nanti
cpb Ashéninka (Ucayali-Yurúa

dialect)
cpc Ashéninka (Apurucayali

dialect)
cpu Ashéninka (Pichis

dialect)
crq Chorote (Iyo’wujwa and

Iyowa’ja dialects)
cto Emberá-Catío
cub Kubeo
cui Cuiba
cul Kulina
cyb Cayubaba
des Desano
dny Dení
eme Emerillon
emp Northern Emberá
ese_bol Ese Ejja (Bolivia)
ese_per Ese Eja (Peru)
fun Yaathe
gae Warekena
gqn Kinikinao
gta Guató
gub Guajajára
guc Wayúu
gug Paraguayan Guaraní
guh Guahibo

gui_chn Chiriguano (Chané
dialect)

gui_izo Chiriguano (Izoceño
dialect)

gum Guambiano
gun Mbyá
guo Guayabero
guq Aché
guu Yanomamö
guu_par Yanomamɨ of Parawau
guu_ven Yanomamɨ of Venezuela
gvc Wanano
gvj Guajá
gvo Gavião do Jiparaná
gvp Gavião do Pará
gyr Guarayu
hix Hixkaryána
hto Huitoto, Minica
hub Huambisa
huu Huitoto, Murui
ign Ignaciano
inb Inga (Highland dia-

lect)
inj Inga (Jungle dialect)
inp Iñapari
iqu Iquito
irn Mỹky
ito Itonama
jaa_jmm Jamamadí
jaa_jrw Jarawara
jbt Jabutí
jeb Shiwilu
jiv Shuar
jqr Jaqaru
jru Japreria
jua Júma
jup Hup
jur Jurúna
kaq Capanahua
kav Katukína
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kay Kamayurá
kbb Kaxuiâna
kbc Kadiwéu
kbh Camsá
kgk Kaiwá
kgp Kaingang
knt Katukína (Panoan)
kog Kogi
kpc Curripaco
kpj Karajá
kqq Krenak
kre Panará
ktn Karitiâna
ktx Kaxararí
kui Kuikúro-Kalapálo
kuz Kunza
kvn Border Kuna
kwa Dâw
kwi Awa-Cuaiquer
kxo Kanoé
kyr Kuruáya
kyz Kayabí
kzw_dzu Karirí-Xocó (Dzubukuá

dialect)
lec Leco
ltn Latunde
lul Lule
mav Sateré-Mawé
mbc Macushi
mbj Nadëb
mbl Maxakalí
mbn Macaguán
mbp Damana
mbr Nukak
mca Maka
mcb Matsigenka
mcd Sharanawa
mcf Matsés
mcg Mapoyo
mch Yekwana

mmh Mehináku
moc Mocoví
mot Barí
mpd Manchinere
mpq Matís
mpu Makuráp
mtp Wichí (Mision la Paz

dialect)
mts Yora
myp Pirahã
myr Muniche
myu Mundurukú
myy Macuna
mzp Movima
nab_kth Kithaulhu
nhd Nhandeva
noa Woun Meu
noj Nonuya
not Nomatsigenga
nuc Nukini
oca Ocaina
omc Mochica
omg Omagua
ona Ona
ona_mtr Haush
opy Ofayé
ore Máíhɨki
orw Oro Win
oym_amp Wayampi (Ampari

dialect)
oym_jri Wayampi (Alto Jarí

dialect)
pab Paresí
pad Paumarí
pah Tenharim
pak Parakanã
pav Wari’
pbb Páez
pbg Paraujano
pbh Panare
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pcp Pacahuara
pev Pémono
pib Yine
pid Piaroa
pio Piapoco
pir Piratapuyo
plg Pilagá
plu Palikúr
pno Panobo
prq Ashéninka (Perené

dialect)
prr Puri
psx Pisamira
pta Pai Tavytera
pto Zo’é
pue Puelche
pui Puinave
pyn Poyanáwa
qpt Parkateje
qub Huallaga Huánuco

Quechua
quf Ferreñafe Quechua
quk Chachapoyas Quechua
qul Bolivian Quechua

(Northern and Southern
dialects)

qus Santiago del Estero
Quechua

quw Tena Quechua
quy Ayacucho Quechua
quz Cuzco-Collao Quechua
qvc Cajamarca Quechua
qvi Imbabura Quichua
qvn_caj North Junín Quechua

(San Pedro de Cajas
dialect)

qvn_tar North Junín Quechua
(Tarma dialect)

qvo Napo Quichua
qvs San Martin Quechua

qwa Ancash Quechua (Sihuas
and Corongo dialects)

qxl Salasca Quechua
qxn Huaylas-Conchucos

Quechua
qxw Jauja-Huanca Quechua
ram Canela
rey Reyesano
rgr Resígaro
rkb Rikbaktsa
sae Sabanê
sey Secoya
sha_ywn Shanenawa
shb Ninam of Ericó
shp Shipibo
sja Epena
skf Sakirabiá
slc Sáliba
snn Siona
sri Siriano
srq Sirionó
sru Suruí
suy Suyá
suy_tap Tapayuna
swx Suruahá
sya Saynawa
tae Tariana
taf Tapirapé
tav Tatuyo
tba Aikanã
tca Ticuna
teh Tehuelche
teh_tsh Teushen
ter Terêna
tit Tinigua
tna Tacana
tnc Tanimuca-Retuarã
tob_lng Toba (Lañagashik dialect)
tob_tks Toba (Takshek dialect)
tpj Tapieté
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tpn Tupinambá
tpr Tuparí
tpy Trumai
tqb Tembé
tri Trió
trn Trinitario
trr Taushiro
tue Tuyuca
tuf Tunebo (Central dialect)
tuo Tucano
txi Ikpeng
txu Mebengokre
umo Umotína
unk Enawené-Nawé
ura Urarina
urb Kaapor
ure Uru
urz Uru-Eu-Wau-Wau
vil Vilela
wap Wapichana
wau Waurá
waw Waiwai
way Wayana
wba Warao
wca Yanomámi
wca_yae Yanomae of Demini/Toto-

topi
wca_yma Yanomama of Papiu
wmd Mamaindé
wyr Wayoró
xav Xavánte
xer Xerénte

xet Xetá
xir Xiriâna
xiy Xipaya
xok Xokleng
xor Korubo
xra Krahô
xri Krinkati-Timbira
xsu Sanumá
xsu_kol Sanömá of Kolulu
xwa Kwaza
yaa Yaminawa
yab Yuhup
yad Yagua
yae Pumé
yag Yahgan
yar Yabarana
yau Hoti
yaw Yawalapití
ycn Yucuna
yme Yameo
yrl Nheengatú
yrm_pac Yãroamë of Serra do

Pacu/Ajarani
yui Yurutí
yup_irp Yukpa (de Irapa)
yup_mac Yukpa (Macoíta)
yuq Yuqui
yuz Yurakaré
yvt Yavitero
ywn Yawanawa
zkp Kaingáng, São Paulo
zro Sápara




