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Abstract

Under conditions of language contact, a languagemay gain features from its neighbors
that it is unlikely to have gained endogenously. We describe a method for evaluating
pairs of languages for potential contact by comparing a null hypothesis, in which a
target language obtained all its features by inheritance, with an alternative hypothesis
in which the target language obtained its features via inheritance and via contact with
a proposed donor language. Under the alternative hypothesis, the donormay influence
the target to gain features, but not to lose features. When applied to a database of
phonological characters in South American languages, this method proves useful for
detecting the effects of relatively mild and recent contact, and for highlighting several
potential linguistic areas in South America.
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1 Introduction

Tukano is a Tukanoan language spoken in northwest Amazonia. Tariana, a
linguistic neighbor, is an Arawak language. Did Tariana gain phonemes as a
result of contact with Tukano? Table 1 shows the phonemes of both languages,
along with counts of how often each occurs in 42 Arawak languages. Arawak is
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table 1 The phonemes of Tukano and Tariana; how often each occurs in 42 Arawak
languages, not including Tariana

Tukano ph p b th t d kh k ɡ ʔ
Tariana ph p b th t d dh tʃ kh k
Arawak 4 38 17 8 42 14 0 30 4 41 10 16

Tukano s h w j ɾ
Tariana m mh n nh ɲ ɲh s h w wh j ɾ l
Arawak 41 0 42 0 24 0 33 37 31 0 39 36 14

Tukano i ĩ e ẽ a ã o õ u ũ ɨ 󰀰 ̃
Tariana i ĩ iː e ẽ eː a ã aː o õ u ũ uː ɨ
Arawak 42 7 22 38 7 20 42 7 22 28 5 26 5 10 13 4

geographically widespread and has fairly diverse phonological inventories. But
aspirated voiceless stops (ph th kh), nasal vowels (ĩ ẽ ã õ ũ), and the unrounded
high central vowel (ɨ) are rare. The fact that Tariana—and Tukano—have all
of these sounds points to borrowing as the right explanation. Upon closer
inspection, we find that the aspirated voiceless stops are shared by Tariana and
other Arawak languages in the region, and thus may not have been borrowed.
However, the case for Tukano-Tariana influence is still intact, with multiple
possible causes, such as the fact that speakers from both communities practice
linguistic exogamy (where one inherits one’s language from one’s father, and
may not marry those that have inherited the same language) or the fact that
Tariana speakers have been switching to Tukano, which has been promoted as
a lingua franca by missionaries and civil authorities (Aikhenvald, 2003).

The abbreviated case study of phoneme borrowing sketched above had both
quantitative and qualitative elements. In this article we describe a statistical
test for performing the main quantitative task: measuring the extent to which
borrowing from a proposed donor language is integral to explaning the phono-
logical inventory of a target language. Just as in the case study, this purely
quantitativemeasure of the plausibility of borrowingmust be synthesizedwith
sociohistorical and geographical considerations to yield a complete picture.
But evenby itself, given a reliable linguistic database, the test can yield apanop-
tic viewof how languages interact on a continental scale; and this candirect the
linguist to phenomena that may merit further attention.

For reasons that will become clear below, we call this statistical test a ram
test, where ram stands for relaxed admixturemodel. As a probabilisticmodel of
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admixture in languages, ram has at least two antecedents. One is STRUCTURE,
which was originally designed to cluster biological specimens by positing a
small number of ancestral populations fromwhich they descend, with the pos-
sibility for some specimens to be classified as deriving frommultiple ancestral
populations (Pritchard et al., 2000). STRUCTURE has been applied to linguistic
data as well: Reesink et al. (2009) examined the distribution of typological fea-
tures in languages ofMaritime Southeast Asia andAustralia, andBowern (2012)
evaluated the integrity of word list data from extinct Tasmanian languages as
preparation for classifying the languages.Another antecedent of ram is amodel
by Daumé (2009) in which a language’s features are treated as an admixture of
phylogenetically inherited features and areal features. In this model, linguis-
tic phylogeny, the borrowability of each linguistic feature, and the locations of
linguistic areas are all reified as underlying variables.

ram differs from its antecedents in two significant ways. Both STRUCTURE
and Daumé’s model are global models, in the sense that they seek a coher-
ent explanation for the entire dataset. ram is a local model. It evaluates the
possibility of borrowing between a pair of languages, without regard to other
languages. Despite the crudeness of this approach, we find that it suffices to
generate interesting areal hypotheses and to answer basic questions such as
which features were borrowed. ram’s simplicity also yields dividends in com-
putational speed: it allows for fast, exact inference in themain calculation (see
Section 4.3, Appendix a.2).

The second way in which ram differs from its antecedents is in how admix-
ture is actually modeled. In both STRUCTURE and Daumé’s model, every fea-
ture is assigned one source. Admixture is modeled by allowing different fea-
tures in the same language to be assigned to different sources.1 In ram, a feature
may have two sources, and the sources are additive. Each feature can be inher-
ited with some frequency (first source), but failing that, the feature can still be
borrowed from a donor (second source). In effect, the presence of a feature can
be borrowed, but the absence of a feature cannot be. We term this mechanism
relaxed admixture. It is this mechanism that allows the model to detect more
superficial contact, which we believe tends to be additive in nature.

1 In STRUCTURE, the source is one of K ancestral populations. In Daumé’s model, the source
is either the phylogeny or the area. In both models, there is a latent matrix variable (written
as Z in both cases) that designates the source for each of a language’s features. The value
of Zil determines the source for feature l in language i. This source is used to look up the
feature frequency for feature l, which is then used to generate the feature value via a Bernoulli
distribution (i.e. tossing a biased coin).
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In this paper we apply the ram test to a database of the phonological inven-
tories of South American languages, described in Section 2. Some statistical
concepts undergirding this test are briefly discussed in Section 3. The test itself
and the rammodel are presented in Section 4. Analysis results are discussed in
Section 5 along with cultural and linguistic areas proposed by others. Finally,
Section 6 examines one such area more closely. The Upper Xingú, we argue, is
a linguistic area, but it is hard to demonstrate this by other quantitative meth-
ods.

2 Dataset

Our analyses operate on phonological inventories obtained from SAPhon
(Michael et al., 2013), which aims to be a high-quality, exhaustive database of
the phonological inventories of the languages of SouthAmerica. For each of 359
languages, SAPhon encodes its phonological inventory as a binary vector, with
each element indicating the presence or absence of a particular phoneme in
the phonological inventory. There are also a small number of elements in this
vector that indicate more general properties of the phonology of the language,
such as whether it has tone or nasal harmony. In this article we will refer to the
vector as a feature vector, and to each element as a linguistic feature. These fea-
tures are not to be confused with phonological features such as continuant or
unrounded, which are not features of languages but of phonemes.

Some regularizationhas beendoneon thephonological inventories, tomake
themeasier to compare. For example, /ɛ/ has been replacedby /e/whenever /e/
doesn’t already exist, since in this case the choice between /e/ and /ɛ/ is fairly
arbitrary. After regularization, the database has 304 features.Other information
such as language family and geography are discarded during analysis, but are
used in plotting results.

For more details on the dataset or the regularization procedure, please see
the article by Michael et al. in this volume.

3 Probabilistic Generative Models

This work employs probabilistic generative models, which can be used to
construct expressive models for diverse physical phenomena. Suchmodels are
often surprisingly tractable, thanks to a rich set of mathematical formalisms
(Jordan, 2004). The term generativemeans that the data we seek to explain are
modeled as having been generated via a set of hidden or underlying variables;
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figure 1

Diagram of a probabilistic generative model

and probabilistic means that variables are related by probabilistic laws, as
opposed to deterministically.

Such models are often represented graphically as in Fig. 1, in which each
variable is a node. By convention, an observed variable (i.e. data) is represented
by a filled node. Thus, x is data and ϕ, θ, and z are unobserved, underlying
variables.2 Causal relationships between the variables are shown by arrows,
with the direction of the arrow showing the direction of causation. Here, θ
generates z; and ϕ and z together generate x: that is, the model defines the
conditional distributions p(z | θ) and p(x | ϕ, z). Variables such as ϕ and θ that
lack arrows leading to them are generated ex nihilo by drawing from respective
prior distributions p(ϕ) and p(θ). These distributions encode our beliefs about
what ϕ and θ could be, before we see the data.

It is important to note that the model as a whole is a description of how the
data x is generated, and that the model assigns a probability to the data. There
are typically many ways that the data could be generated, in the sense that
the underlying variables could assumemany different values and still generate
the data with varying probabilities. But if we sum (or integrate) over all the
possible values for the underlying variables, we get the absolute (i.e. marginal)
probability of the data. More formally, the model provides that

2 We will write x for both a random variable and for particular values of that random variable.
We write p(x) for the mass function of x if it is a discrete random variable, and the same
for its density function if x is continuous. In expressions such as x ∼ Beta(1/2, 1/2) or
E[x] = ∫ xp(x)dx, context should suffice to indicate that the first x in each expression is
a random variable, and the other instances of x are bound values.
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p(x, z, ϕ, θ) = p(x | z, ϕ)p(ϕ)p(z | θ)p(θ).

Suppose that ϕ and θ are continuous variables, and that x and z are discrete.
We can integrate over the continuous underlying variables and sum over the
discrete underlying variables to get the marginal probability

p(x) = ∫
θ

∫
ϕ

∑
z

p(x | z, ϕ)p(ϕ)p(z | θ)p(θ)dϕdθ.

We will interpret this probability as a measure of the aptness of the model.
In this context, the marginal probability of the data is known as the marginal
likelihood of the model. In the following section we will build two competing
models for explaining the same data, calculate their marginal likelihoods, and
use the ratio as a measure for their relative aptness.

4 RAM Test

The ram test is set up as a statistical hypothesis test. The analyst picks a target
language and a donor language—these are treated as givens. Then we ask the
question: is the inventory of the target language better explained as a product
of inheritance from its linguistic family alone, or is it better explained as a joint
product of inheritance and borrowing from the donor? These two hypotheses
are fleshed out by twomodels: the inheritance-onlymodelℳ0, whichwe treat
as a null hypothesis; and the relaxed admixture model ℳ1, which we treat as
the alternative hypothesis.

4.1 Model ℳ0: Inheritance Only
The inheritance-only model is depicted in Fig. 2. The rounded rectangles are
plates. They convey that the variables contained by them are arrayed. For
example, θ is a vector with L elements, and x is an N × L matrix. Arrows that
cross into a plate denote that each element of the downstream variable is
independently generated and identically distributed. For example, the arrow
from θ to x crosses a plate, denoting that for each l, the elements x1l, x2l, …, xNl
are independently generated from θl and are identically distributed.

The inheritance-onlymodelworksby characterizing each language family as
a vector of feature frequencies θ = (θ1, …, θL), one for each feature. Each lan-
guage of the language family, including the target language, ismodeled as being
generated by these feature frequencies. The variable x0 = (x01, x02, …, x0L)
is a feature vector encoding the phonological inventory and other phonologi-
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figure 2 Inheritance-only modelℳ0

cal characteristics of the target language, with x0l encoding the presence (1) or
absence (0) of feature l.N is the number of languages in the family of the target
language, not counting the target language itself. The variable x is an N × L
binarymatrix that encodes the inventories of the other languages in the family.
For each language n and feature l, xnl is generated from θl. It is present (xnl = 1)
with probability θl or absent (xnl = 0) otherwise. The feature frequency
θl is generated by drawing from a beta distribution whose parameters are
a function of μl and λl (see figure for details). The vector μ = (μ1, …, μL)
contains “universal frequencies” for each feature across all languages, and λ =
(λ1, …, λL) describes how generally these universal frequencies hold. When λl
is high, the feature frequency of l in each language family closely resembles the
universal frequencyμl, and theopposite is truewhen λl is low. Theseparameters
becomevery significantwhen the target is an isolate, orwhen its family is small.
There is not enough data to infer these parameters, so they are set before any
ram tests are run by estimating them from the entire dataset, as described in
Section a.1.

4.2 Model ℳ1: Relaxed AdmixtureModel
The relaxed admixturemodel (ram) is depicted in Fig. 3. Under relaxed admix-
ture, the presence of a sound can be borrowed, but the absence of a sound
cannot be.

The parts that are similar to the inheritance-only model have been grayed
out. The new elements model the possibility for the target language to obtain
features from a donor, whose feature inventory is denoted by feature vector y.
The underlying variable z is a vector, of which each element zl encodeswhether
the target will attempt to borrow feature l from the donor. The target language
has two chances to gain a feature. If the attempt is made (zl = 1) and the donor
has the feature (yl = 1), the target language gains feature l from the donor.
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figure 3 Alternative hypothesis modelℳ1

Otherwise, it may still get feature l via inheritance, with probability θl, as in
the inheritance-only model. The admixture parameter ϕ is used to generate z.
Each element zl will be one (that is, the target language will attempt to borrow
each feature) with probability ϕ. In our analyses, we will use the posterior
expected value of ϕ as an indicator of the fraction of the donor’s features that
are transferred to the target.

How realistic is ram as a model of phoneme borrowing? It is easy to find
examples where one language has influenced another to lose phonemes. Yáne-
sha, an Arawak language, lacks mid vowels due to influence from Quechua
(Wise, 1976). Nukak, a Kakua-Nukak language, lacks phonemic nasal stops
due to influence from nearby Tukanoan languages (Epps, 2011). Yet it is our
(unquantified) impression that the borrowing of phonemes ismuchmore com-
mon than the borrowing of absences. We also proceed on the assumption that
gaining a sound can easily happen in instances of superficial contact, but that
losing a sound generally entails a deeper structural change in the phonology
of the language, which necessitates more intense contact. We felt that being
unable to model the latter phenomenon was a reasonable price to pay for hav-
ing a simple model that was sensitive to the former phenomenon, which we
posit to be more common.

ram is also unrealistic in a more general respect: each feature is modeled as
largely independent of the others. Common sense (along with examples such
as Tariana in the introduction) suggests that many phonemes are borrowed as
a clump, as in the case of aspirated voiceless stops or nasal vowels. Properly
construed, what are borrowed are phonological features such as aspiration
or nasality, which manifest themselves as new sets of phonemes. The model,
however, counts each phoneme as being borrowed on its own.

The way endogenous features are modeled is naive in the same way. Both
ℳ0 and ℳ1 model inherited phonemes as being generated independently.
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Since our method relies on comparing two models, and the two models are
naive in the same way, the clumping of features does not bias the result in
favor of either model. However, clumps will cause the magnitude of the differ-
ence between the models to be exaggerated, since each clump of phonemes,
in essence a unitary phenomenon, gets counted many times. Moreover, the
borrowing of a large clump, such as nasal vowels, will have an outsized effect
compared to the borrowing of a single phoneme such as /ɨ/, which tends not to
participate in clumps. This may cause the sensitivity of the ram test to degrade
substantially, but we have no way to address this problem.

4.3 Borrowing Score
In order to quantify the aptness of ℳ1 with respect to ℳ0 for explaining
the data x0, we compute the Bayes factor, which is the ratio of the marginal
likelihood of each model:3

𝒦 =
p(x0 | x, y, ℳ1)
p(x0 | x, ℳ0)

.

We expand this so as to be explicit about which underlying variables are being
summed or integrated over:

𝒦 =
∑z ∫ϕ ∫θ p(x0, θ, z, ϕ | x, y, ℳ1)dθdϕ

∫θ p(x0, θ | x, ℳ0)dθ
.

Both models are simple enough that the Bayes factor can be computed exactly
(see Appendix a.2 for details). We use the log of the Bayes factor as a borrowing
score for each donor-target pair. When the borrowing score is greater than
zero, ℳ1 is favored over ℳ0, and one can conclude that it is more likely that
the target borrowed features from the donor, than that all its features were
inherited. In our analyses, we will look for borrowing by applying the ram test
to all pairs of languages in the dataset.

4.4 Caveats
No tractable mathematical model can account for every detail of a phenome-
non as complex as language. This is all themore true of models as rudimentary

3 To avoid clutter, we write p(x0 | x, ℳ0) rather than p(x0 | λ, μ, x, ℳ0), and p(x0 | x, y, ℳ1)
rather than p(x0 | λ, μ, x, y, ℳ1), since λ and μ are fixed parameters. When the model being
referred to is clear from context, we may write just p(x0 | x) or p(x0 | x, y).
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as ℳ0 and ℳ1, which are, by design, just complex enough to yield useful
results. Belowwe list themore conspicuousways inwhich themodels are unre-
alistic, and describe how this influences our interpretation of the borrowing
score.

1. It bears repeating that the phenomenon of feature clumping, discussed in
Section 4.2, causes the borrowing score to be exaggerated. Consequently it
is ill-advised to interpret the borrowing score as the logarithmof a Bayes fac-
tor, despite the fact that, formally, it is exactly that. Applying thewell-known
interpretive scale proposed by Jeffreys (1961) would yield highly misleading
results. Instead, we recommend evaluating a borrowing score by comparing
it to what might be obtained from pairs of languages chosen at random (see
analysis in Section 5) andby choosing a threshold that is high enough to filter
out language pairs that are deemed unlikely, on extralinguistic grounds, to
have interacted. It shouldbenoted thatmore sophisticatedmodels of admix-
ture such as STRUCTURE and Daumé’s model (see Section 1) also assume
that linguistic features are conditionally independent, and are susceptible
to the same kind of problem. Short of building in a model for featural non-
independence (thiswould be a difficult task), the onlyway to ameliorate this
problem is to choose datasets with features that are less non-independent.

2. ℳ0 and ℳ1 are not phylogenetic models. They do not model cladal inno-
vations within language families. Consequently the borrowing score is unre-
liable as an indicator of intrafamily borrowing, as it will tend to ascribe the
effects of shared innovations to borrowing. For example, a subset of Arawak
languages in Peru have /tj/, which could well be a shared innovation. But
since this phoneme is rare in Arawak as a whole, the ram test will tend to
treat it as having been borrowed between these Peruvian Arawak languages.

3. ℳ1 is a local model of borrowing, in the sense that, if another language is a
more suitable choice as a donor than the donor in ℳ1, this does not affect
the borrowing score. In our analyses, some targets will have high borrowing
scores with a large number of donors, but there is probably just one actual
donor.

4. The borrowing score is often a poor indicator of the direction of borrowing.
In theory, it is asymmetric: if we switch the target and donor in a ram test,
the borrowing score will be different. In practice, however, the real direc-
tion of borrowingmay correspond to the configuration that yields the lower
score. How does this happen? Suppose language A1 from family A has given
features to languages B1, B2, and B3, whichmake up family B. Since every lan-
guage in B has features borrowed from A1, the model will believe that these
features are endogenous to family B, and may even believe that they were
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figure 4 Interfamily borrowing scores by distance. The second plot is an enlargement of the
first.

given to A1. In some of our analyses we use a symmetric version of the
borrowing score by computing the borrowing score for two languages both
ways, and taking the larger score to be the score between the two languages.

5. The borrowing score ismildly transitive. IfA gives features toB thatB gives to
C, the borrowing score betweenA and Cmay be high. Thismeans that a high
borrowing score is not necessarily indicative of direct contact. In practice
this is not a serious problem: transitivity leads to a small amount of clutter
in the results, but it is easy to identify and discount it.

6. The borrowing score does not respect distance. If one had wanted to model
the effect of distance, one could, in ℳ1, adjust the prior for the admixture
parameter ϕ to have a lower mean for greater distances, but we did not do
this, as wewere unable to think of how to do it in a principled way.We opted
instead to account for distance post hoc, as discussed in the next section.
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5 Results

The plots in Fig. 4 show, for each pair of languages not in the same family,
the higher of the two borrowing scores involving the pair, plotted against the
distance between the pair in kilometers. Also shown are quantile lines, condi-
tioned on distance.4 There are three characteristics of this plot that accordwith
our intuitions about how a useful indicator of borrowing should behave.

– The median line is well below zero. The probability that two languages not
from the same family, chosen at random, have a positive score is 0.17.

– The median line is relatively flat, indicating that the borrowing score is not
merely a function of proximity.

– The higher-quantile lines get higher as the distance decreases: the ram test
finds that the closer two languages are, the more profitable it is to posit
borrowing. The bulges at 3800km in the 99 and 95 percentile lines are due to
how Andean and Patagonian languages have similar phonological profiles.

It is desirable to plot these results on a map, to show the language pairs that
are likely to have exchanged features. One possibility is to plot each pair with
a score higher than zero, by drawing a line between the languages on the map.
But this plotwould be far too cluttered to be informative. In Fig. 5we opt to plot
just the pairs that are less than 400km apart, and score higher than an arbitrary
threshold of 3. At distances greater than 400km, even borrowing scores in the
99 percentile range aremostly spurious, due to coincidental resemblances and
to how feature clumping exaggerates borrowing scores.

Figure 5 has 143 line segments, each representing a hypothesis of contact.
Only by careful sociohistorical and geographical considerations can each of
these hypotheses be confirmed, but the fact that there are some places on the
map where the connections are especially dense is promising in this regard.
Four of these regions correspond to proposed culture areas found in the litera-
ture on South American languages. The constituent languages are colored red.

In two of these areas, phonological diffusion has already been documented:
the Vaupés (Aikhenvald, 2002) and the Southern Andes (Büttner, 1983). In the
other two, our findings of phonological diffusion are novel, but plausible. The
middle reaches of the Putumayo River and its tributaries constitute a culture

4 Themedian (50 percentile) line is drawn so that half the data points at any given distance are
below it; the 80 percentile line is drawn so that 80% of the data points at any given distance
are below it, etc.
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figure 5 Line plot showing language pairs with high borrowing scores. Some languages have
been nudged apart for clarity. Languages in red belong to a proposed culture or
linguistic area. The supplement contains a larger diagram with all languages
labeled.
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area in lowland South America, whose constituent ethnolinguistic groups are
known as the People of the Center (Seifart, 2011). Better known is the Upper
Xingú, a very strong culture area located along an upriver (southern) section of
the Xingú River.

6 Upper Xingú

6.1 Phonological Diffusion in the Upper Xingú
In this section we take a closer look at ram test results for the languages of the
Upper Xingú. Our main references for the linguistic situation in this culture
area are articles by Lucy Seki (1999, 2011). Since the time of the colonization
of Brazil, the Upper Xingú has served as a refugium for Indian tribes. As a
culture area it is young—just 150 or 200 years in age—with a complex history
of having other tribes pushed into its orbit by settlers or transferred there by
the Brazilian government. Intermarriage is common, and on some occasions,
entire tribes that speak different languages came to live together. Of the 16
languages or dialects that Seki (1999) lists as being in or associated with the
area, our dataset has phonological inventories for the 13 listed in Fig. 6. Their
order in the diagram corresponds to their order along the banks of the Xingú
River. The languages that entered the area after 1950 are marked with stars.

Except for Trumai, the Xinguan languages belong to four large families
(Arawak, Carib, Macro-Ge, and Tupí) that all happen to be widely dispersed
in South America. This makes it possible to infer the direction of borrowing.
Accordingly, we distinguish between donor and target, and draw line segments
for those pairs that score higher than 2. We have simplified the diagram some-
what by showing, for each target, only the highest-scoring donor from each
language family. For each line segment, we report two numbers and a list of
features. The first number is the borrowing score. The second is the estimated
mean of ϕ inℳ1 scaled up by 100. This is the percentage of the donor’s features
given to the target.5 The features that follow are the features that have the high-
est estimated means for zl in ℳ1. These are the features that were most likely
to have been given to the target. (See Appendix a.3 for the details of these cal-
culations.)

5 One reviewer remarked that these borrowing percentages are huge—as much as 65.9% in
the case of Awetí to Kuikúro. Such a high figure is partly an effect of relaxed admixture, but
also not surprising after considering the particulars of these languages.

With a standard model of admixture, a borrowing percentage of 100% means that the
target ends up identical to the donor, since it borrows both presence and absence of each of
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figure 6 Languages of the Upper Xingú culture area, ordered
from north (downriver) to south (upriver). Asterisks
mark those that entered the area after 1950. Line
segments show pairs with borrowing scores higher
than 2. (Nodes on the left represent languages as
donors; nodes on the right respresent them as targets.)
For each such pair, we report the borrowing score, the
mean percentage of the donor’s segments that were
borrowed, and the segments identified as likely
borrowed, contingent on contact.

the donor’s feature values. Under relaxed admixture, even a borrowing percentage of 100%
does not prevent the target from receiving features by inheritance. It would only mean that
the target receives every feature that the donor has. The flexibility of relaxed admixture
implies higher borrowing percentages.

As for Awetí and Kuikúro, each has 26 sounds, of which they share 22. Of the sounds that
are present in less than a third of all Carib languages, Kuikúro has /ts dj ŋ γ/ l ĩ ẽ ã õ ũ 󰀰/̃ and
Awetí has all of these except /dj/. As a donor, Awetí thus accounts nicely for 10 of Kuikúro’s
26 sounds, and has only 4 sounds that are not in Kuikúro: /ʔ ʐ j ɾ/.
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table 2 Feature frequencies in four South American language
families, normalized to 100; and whether those
features are present in the nine languages from Fig. 6
that are older to the Upper Xingú (those that predate
1950). The last column is for any nasalized vowel.

/ɨ/ /ts/ /ã/, etc.

Arawak 65 19 30
Carib 3 14 100
Macro-Ge 7 79 93
Tupí 15 85 96

Jurúna (t) y y
Suyá (m) y y
Trumai (i) y y
Kuikúro (c) y y y
Kamayurá (t) y y y
Yawalapití (a) y y
Mehináku (a) y y y
Awetí (t) y y y
Waurá (a) y y y

We note three patterns in how phonemes diffuse in the Upper Xingú:

– Arawak and Carib languages are the recipients of nasal vowels.
– Arawak languages are the recipients of /ɨ/.
– Carib and Tupí languages are the recipients of /ts/.

Table 2 gives some intuition for how the model arrived at these conclusions,
by listing the continent-wide frequencies of these features in Arawak, Carib,
Macro-Ge, and Tupí.We see that in each case, the recipient of a feature belongs
to a family in which the received feature occurs less frequently. Table 2 also
serves to show that the features in questionhavediffusedwidely, at least among
the languages that are older to the area.

Our analysis often suggests several candidate donors for each target, but
there is often no obvious reason to prefer one over another. It may even be
the case that the actual donor is now extinct. On the other hand, the identity
of recipients is less equivocal, since it is inferred from the fact that they have
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features unlikely to be endogenous, and that possible donors exist. It is worth
noting that of the five languages not identified as recipients, three are recent
arrivals.6

6.2 A Linguistic Area without Distinctive Features?
The Upper Xingú is not documented as having many distinctive linguistic fea-
tures. We can confirm this description for phonemes by attempting to train
a naive Bayes classifier to discriminate between Xinguan languages and other
Amazonian languages (see Michael et al., this volume, for details on this
method). Let us posit an areal core consisting of the nine languages in Fig. 6
that were present in the Upper Xingú before 1950. We also construct a control
class of languages to serve as a background to the core languages. These consist
of the 43 languages in SAPhon that are at a distance of between 400km and
1,000km from the nearest language of the core. These two sets of languages
are depicted via dots of different shapes in Fig. 7. They are fed into a naive
Bayes classifier, which calculates feature deltas indicating the strength of the
association between each feature and each training class (Fig. 8). The classifier
also calculates language scores, which denote the probability of membership
of each language in each training class (Fig. 7).

As can be seen from Fig. 7, the classifier is unsuccessful in discriminating
between core languages and other languages. There are languages in the core
that it believes, based on their features, not to be core-like (the blue triangles).
And there are a very large number of languages in both the control set and
farther away that the classifier believes should be in the core (red squares and
circles). This suggests that the core languages lack distinctive features. Figure
8 provides more direct evidence of this. There are just a few features with
deltas greater than 2 or less than -2: these are relatively strong indicators of
the membership of a language. The analysis tells us that a Xinguan language is
distinguished from its Amazonian neighbors by the presence of /ts/ and the
absence of /ɡ/, /o/, /ə̃/, tone, and long vowels. Clearly it is easy enough for
this sort of language to arise by chance, as it has in many other parts of South
America.

We thus conclude that the Upper Xingú lacks truly distinctive phonemes.
But could it still be considered a linguistic area? Seki has called it an incipient

6 The other two are Yawalapití and Trumai. Seki (1999: 426) refers to a reconstruction of
Proto-Arawak to suggest that Yawalapití /ɨ/ may be a diffused Xinguan feature; but since /ɨ/
is present in 30% of Arawak languages, the ram test, with its coarse model of inheritance,
could not conclude the same. As for Trumai, it is hard for the ram test to decide if any of its
features are exogenous because it is an isolate.
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figure 7 Language scores assigned by a naive Bayes classifier. Redness (or blueness) denotes
the probability of membership in the Upper Xingú core (or the control).
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figure 8 Feature deltas assigned by a naive Bayes classifier. Positivity (or negativity) along the
y-axis denotes the strength of the association between a feature and the Upper Xingú
core (or the control).

linguistic area, noting that it is young as a culture area, and that there are rela-
tively few features that have diffused throughout the area. Our analysis favors
the less nuanced conclusion that it is a full-fledged linguistic (or, more pre-
cisely, phonological) area. The Upper Xingú was one of the areas to be picked
out by the ram test as exhibiting a high density of potential pairwise borrow-
ing. We looked into ℳ1 to see which languages and sounds were involved, and
found that the inferred targets of borrowing and the sounds inferred as trans-
fered were plausible. We also saw that these sounds were widespread among
the more longstanding members of the area. Despite the fact that the sounds
are not distinctively Xinguan, we arrive at the conclusion that they diffused
throughout the area. What remains is for investigations of other linguistic fea-
tures (lexical, typological) to be synthesized with ours, before an unequivocal
conclusion can be reached.
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figure 9 Model for estimating μ and λ

Appendix a: Mathematical Details

a.1 Universal Feature Frequencies
Both the inheritance-only model ℳ0 and the relaxed admixture model ℳ1
require reasonable settings for the universal feature frequencies μ and the
generality parameter λ, both of which are vectors of L elements, where L is the
number of features in the analysis. In order to set μ and λ, we extend ℳ0 to
include all languages in the dataset (Fig. 9) and estimate themean of μ and λ in
this extended model using Markov chain Monte Carlo sampling. We set μ and
λ in ℳ0 and ℳ1 to these estimated means.

The extension of ℳ0 is defined as follows. We write K for the number of
language families, and Nk for the number of languages in family k. The data
x is organized as a vector of binary matrices (x1, …, xK), where xk is a matrix
of size Nk × L. Each family k is characterized by a bank of feature frequencies
θk = (θk1, …, θkL), one for each feature. Feature l in language n of family k is
present (xknl = 1) with probability θkl or absent (xknl = 0) otherwise. Feature
frequency θkl is generated by drawing from a beta distribution whose shape
is determined by λl and μl, and whose mean is μl. Each μl is drawn from a
beta distribution parameterized by ρ1 and ρ0. Each λl is drawn from a gamma
distribution with shape parameter 𝛼 and rate parameter β. Tying the elements
of μ, λ, and θ together in this way is a form of data smoothing. It prevents these
parameters frombeing too extremewith features that are very common or very
rare, as would be the case if they were estimated in a less structured way (e.g.,
by assigning to θkl the number of occurrences of feature l in cluster k, divided
by the number of languages in cluster k).
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During inference we collapse θ and work directly with the relationship
between x, λ and μ. If we define Nk l = xk1l + xk2l + ⋯ + xkNk l, then for all
k ∈ {1, …,K}, conditioned on λl and μl, Nk l has a beta-binomial distribution,
and

p(xk1l, …, xkNk l | λl, μl) = (Nk
Nk l

)
−1

p(Nk l | λl, μl)

=
B(Nk l + λl μ l,Nk − Nk l + λl(1 − μl))

B(λlμl, λl(1 − μl))
,

where B(⋅, ⋅) is the beta function B(a, b) = ∫1
0 ta−1(1 − t)b−1dt. We sampled

each of the uncollapsed variables 𝛼, β, ρ1, ρ0, λ, and μ from their posterior
distributions using the Metropolis-Hastings algorithm (Hastings, 1970).7 We
write 𝛼̂ for the posterior mean of 𝛼, etc. We obtained the following posterior
means:

ρ̂1 ≈ 0. 34 ρ̂0 ≈ 2. 24 𝛼̂ ≈ 3. 89 β̂ ≈ 1. 75

It is interesting that, of the features for which μ̂l > 0. 1, the ones with the
highest λ̂l values are /h/, /dʒ/, and /p/, which have λ̂l values of 3.45, 3.31, and
3.20 and μ̂l values of 0.68, 0.14, and 0.91. These phonemes are inferred to have
similar feature frequencies in all language families. The ones with the lowest
λ̂l values are /k’/, /t’/, and /q/, which have λ̂l values of 0.50, 0.54, and 0.77, and
μ̂l values of 0.14, 0.16, and 0.10. These are sounds that appear either at high or
low frequencies, depending on the language family, but seldom at frequencies
close to μ̂l.

a.2 Marginal Likelihoods
a.2.1 Marginal Likelihood of ℳ0
To compute the marginal likelihood of ℳ0, we observe that it factorizes:

p(x0 | x) =
L

∏
l=1

p(x0l | x⋅l),

7 In our mcmc sample chain, we resampled each uncollapsed variable in a fixed order, and did
this 100,000 times. Each element of λ and μwas resampled individually.We discarded the first
half of the sample chain and used the second half as the posterior sample.
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with x⋅l being a shorthand for the vector (x1l, …, xNl). We capitalize on the fact
that the beta distribution is the conjugate prior of the Bernoulli distribution,
and observe that

θl | x⋅l ∼ Beta(Nl + λlμl,N − Nl + λl(1 − μl)),

where Nl = x1l + ⋯ + xNl. This implies that

p(x0l | x⋅l) =
⎧{
⎨{⎩

Nl+λl μl
N+λl

if x0l = 1,

1 − Nl+λl μl
N+λl

if x0l = 0.
(A.1)

a.2.2 Marginal Likelihood of ℳ1
Tocompute themarginal likelihoodofℳ1, it is useful to thinkof thismodel as a
mixture ofℳ0-likemodels, with eachpossible value of z yielding a component
of the mixture:

p(x0 | x, y) = ∑
z

p(z)p(x0 | z, x, y). (A.2)

We write H(z) for z1 + ⋯ + zL and observe that H(z) has a beta-binomial
distribution, and thus

p(z) =
B(H(z) + 1

2)
B(L + 1) .

The conditional probability of x0, like themarginal probability of x0 underℳ0,
factorizes:

p(x0 | z, x, y) =
L

∏
l=1

p(x0l | zl, x⋅l, yl).

When zl = 0, the lth factor is identical to the quantity computed in Eq. a.1:

p(x0l | zl = 0, x⋅l, yl) = p(x0l | x⋅l, ℳ0)

When zl = 1, it is
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p(x0l | zl = 1, x⋅l, yl) =

⎧{{{{
⎨{{{{⎩

Nl+λlμl
N+λl

if x0l = 1 and yl = 0,

1 − Nl+λlμl
N+λl

if x0l = 0 and yl = 0,

1 if x0l = 1 and yl = 1,

0 if x0l = 0 and yl = 1.

(A.3)

Note that this equation is what establishes relaxed admixture. In a more con-
ventional model of admixture, the right-hand side would simply be 1 when
x0l = yl and 0 otherwise.

Now that we explained the elements of Eq. a.2, we turn to the question of
how to evaluate it. Since z has 2L possible values, simply summing over all
terms is computationally infeasible. Our solution exploits a recurrence relation
to evaluate Eq. a.2 inO(L2) arithmetic operations. For notational convenience,
we define:

al = p(x0l | zl = 0, x⋅l, yl),
bl = p(x0l | zl = 1, x⋅l, yl)

for l = 1, …, L

and

qh = p(z) when H(z) = h,
sh = ∑

z:H(z)=h
p(x0 | z, x, y)

for h = 0, …, L.

To be explicit, the summation for sh is over all values of z that contain h ones.
We can rearrange the terms of Eq. a.2 thus:

p(x0 | x, y) =
L

∑
h=0

qhsh. (A.4)

What remains is to compute sh efficiently. We define the recurrence relation

Slh =
⎧{
⎨{⎩

1 if h = 0 and l = 0,
0 if h > l or h < 0,
Sl−1
h al + Sl−1

h−1bl otherwise,
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whence sh = SLh for h = 0, …, L. To make it easy for the reader to verify this
recurrence, we write out Slh for small values of l and h:

h = 0 h = 1 h = 2 h = 3
l = 0 1 0 0 0
l = 1 a1 b1 0 0
l = 2 a1a2 a1b2 + b1a2 b1b2 0
l = 3 a1a2a3 a1a2b3 + a1b2a3 + b1a2a3 a1b2b3 + b1a2b3 + b1b2a3 b1b2b3

Note that Slh is what sh would be if just the first l features were part of the
model. In our routines for computing Slh we represent it on a log scale, to avoid
problems of floating-point underflow.

a.3 Borrowed Features
a.3.1 Fraction of Features Transferred
In the relaxed admixture model ℳ1, the parameter ϕ describes the fraction of
the donor’s features that are transferred to the target. We describe how to infer
the posterior mean of ϕ. Variables defined in our calculation of the marginal
likelihood (Appendix a.2.2) apply here. As in that calculation, we treat ℳ1 as
a mixture.

E(ϕ | x0, x, y) = ∑
z

E(ϕ | z)p(z | x0, x, y).

By Bayes’ theorem,

E(ϕ | x0, x, y) =
∑z E(ϕ | z)p(z)p(x0 | z, x, y)

p(x0 | x, y) . (A.5)

The denominator is the marginal likelihood. The numerator is similar in form
to the marginal likelihood as stated in Eq. a.2, but each term has an extra
factor of E(ϕ | z). We capitalize on the fact that we are working with conjugate
distributions, and observe that

ϕ | z ∼ Beta(H(z) + 1
2 , L − H(z) + 1

2),

whence

E(ϕ | z) =
H(z) + 1

2
L + 1 .
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Since this is a function of H(z), we can evaluate the numerator of Eq. a.5
efficiently. We write rh for E(ϕ | z) when H(z) = h. Then,

∑
z

E(ϕ | z)p(z)p(x0 | z, x, y) =
L

∑
h=0

rhqhsh.

a.3.2 Transfer Probability of a Feature
We now describe how to compute the transfer probability of feature l, i.e. the
probability that feature l was transferred from the donor to the target under
model ℳ1. Variables defined in Appendix a.2.2 apply here. When feature l is
present in the donor language, the transfer probability of feature l is

Pr(zl = 1 | x0, x, y) =
∑z:zl=1 p(z)p(x0 | z, x, y)

p(x0 | x, y) .

The denominator is the marginal likelihood as computed in Appendix a.2.2.
The numerator can be computed in a similar way. For feature l = L, the numer-
ator could be restated as

∑
z:zL=1

p(z)p(x0 | z, x, y) =
L

∑
h=1

qhSL−1
h−1bL.

To calculate the transfer probability of other features, we reorder the features
so that the feature of interest is in position L. We must also recompute SL−1

h−1 for
h = 1, …, L, necessitating O(L2) operations.8

8 There is a way to compute the numerator for any feature l in O(L) operations, but it is
numerically very unstable.Wedescribe it here in hopes that an interested reader could invent
a numerically stable version of it. We restate the numerator as ∑L

h=0 qhth, where

th = ∑
z:H(z)=h,

zl=1

p(x0 | z, x, y).

By this definition, t0 = 0. Other values in the sequence can be derived via the recurrence
relation th = (bl/al)(sh−1 − th−1).




