Probabilistic generative models
of language contact

Will Chang

Workshop on Quantitative Approaches to Areal Linguistic Typology
KNAW Amsterdam
13-14 December 2012

ABSTRACT

Ever since a model from population genetics was used on typological characters to illuminate the
prehistory of Southeast Asia and the Pacific (Reesink et al., 2009), it became clear that such proba-
bilistic models could be useful for a host of other linguistic problems as well. In this talk I will focus
on the nuts and bolts of three such models, each an incremental improvment on, or a variant inspired
by, the STRUCTURE model (Pritchard et al., 2000) that was used in the aforementioned study.

(1) T have applied the STRUCTURE model to data from the SAPhon database (Michael et al., 2012),
consisting of the phonological inventories of 350+ South American languages. 1 will discuss three
enhancements to the model that were necessary for good results: (i) a realistic enough prior for the
feature frequencies in each ancestral population; (ii) a hierarchical Dirichlet prior (Teh et al., 2006)
for language ancestries, so that the number of ancestral populations can be inferred automatically
from the data, rather than set by the analyst; (iii) two methods for summarizing and visualizing the
resulting posterior samples.

(2) The STRUCTURE model presupposes that all states of a character are equally amenable to
borrowing. This assumption is awkward when it comes to modeling binary characters that represent
the presence or absence of a feature. Lev Michael and I have constructed a rudimentary Relaxed
Admixture Model to model features that one language can influence another to gain, but not to lose.
When applied to the SAPhon database, this model proved useful for detecting the effects of relatively
mild and recent contact.

(3) Rather than construct clusters of languages, as STRUCTURE essentially does, one can instead
construct clusters of features — grouping together features that have similar distributions in the lan-
guages. This is especially effective when features are numerous and non-homoplastic. I have taken
POLLEX, a comparative word list of Polynesian languages with over 4000 etyma (Biggs & Clark, 2006),
and formed clusters with these etyma to induce isogloss bundles which reveal episodes of contact in
the prehistory of these languages.



Overview

Explaining the Linguistic Diversity of Sahul using Population Models

G. Reesink, R. Singer, M. Dunn 2009

This talk is a show-and-tell of some of the things that I've been working on for the past two
years. In some respects, the paper shown here (Reesink et al., 2009) is the point of departure for
what I've been doing. In it, the authors used STRUCTURE (Pritchard et al., 2000), a model from
population genetics, to explain the distribution of linguistic typological features in this part
of the world. But for me things actually began when Lev Michael invited me do some analysis
on a database that he was putting together, of the phonological inventories of South American
languages. I hastily agreed because good databases are hard to come by in linguistics.
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Talk overview

» Three models, two datasets.

» Datasets

» SAPhon, a phonological inventory database for South American languages.
» POLLEX, a etymological word list for Polynesian languages.

» Models

» STRUCTURE, modified and used to analyze SAPhon.
» Relaxed Admixture Model (RAM), also for analyzing SAPhon.
» ETYMDIST, a clustering model for analyzing POLLEX.

» Focus

» Model design.
» Inference and implementation are not discussed.
» Results are peripheral, for illustrating what the models do.

» Goals

» Enable you to decide what these model are good for.
» Hear how these models should evolve.

I will discuss two datasets and three models for analyzing them. I will focus on the design
of the models and set aside matters of implementation and inference. I will also discuss some
results, for the purpose of ullustrating the operation of the models. Some of the results are
novel, but should be treated as provisional.

I hope that this talk will put you in a position to decide if any of these models would be
useful to what you do. I also hope to garner feedback on how these models should evolve.



Overview

Terminology

Oe

> Generative: The data (X) is generated (i.e. explained)
by a set of underlying variables (P, Q, Z). C) VA

What’s a probabilistic generative model?

> Probabilistic: Variables are linked by probabilistic
laws. '

O~

All of the models in this talk are probabilistic generative models. By generative I simply mean
that the data is generated by a set of hidden or underlying variables, and by probabilistic I mean
that all variables are related by probabilistic laws, as opposed to deterministically. The diagram
shows such a model using a graph. By convention, an observed variable (i.e. data) is represented
by a filled node. The diagram also shows that there is structure among the underlying variables.
Q generates Z; and P and Z together generate X.
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More terminology

We wish to infer values for P, @, and Z. Bayesian O 0

inference gives a posterior distribution P, @, Z | X.

> Distribution: A set of possibilities, each bearing a
probability. The probabilities must add to one.

> Posterior distribution: Distributions for the C) A
underlying variables, in light of (i.e. posterior to
seeing) the data.

Don't forget: before doing inference, we must state our
prior beliefs (“priors”) for the loose ends P and Q. What ‘ X
distributions do P and @ have before seeing the data?

As is often the case with such models, the goal is to infer what the underlying variables (in
this case, P, Q, and Z) might be, given what the data (X) is. In general, P, Q, and Z could be
many things, but some of those possibilities are more likely than others. The possible values
of P, Q, and Z jointly form a probability distribution, and since this is the distribution that is
obtained after observing the data, it is called a posterior distribution. For each of the models in
this talk, I use Bayesian inference to obtain an approximation to the posterior distribution for
the underlying variables.

As a prerequisite of Bayesian inference, we must state our prior beliefs about the indepen-
dent variables (in this case, P and Q) by specifying probability distributions over their possible
values. These probability distributions encode what we know about P and Q before seeing the
data X . Bayesian inference combines prior beliefs with the data to yield posterior beliefs about
the underlying variables.
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SAPhon: South American Phonological Inventory Database

» http://berkeley. ics.edu/~saphon

nnnnnnnnn

» Phonological inventories for South American languages (L. Michael,
T. Stark, W. Chang, eds.).

» 355 languages, 297 features (most are phonemes).
» Reduce to a binary N x L matrix.

» N languages, L features.
» Each entry encodes whether language n has feature [.

SAPhon aims to be a high-quality, exhaustive database of the phonological inventories of the
languages of South America. For my purposes I encode the data as simply a binary matrix, with
N languages down the side and L features along the top. Each cell encodes the presence (1) or
absence (0) of feature [ in language n. The features are almost all phonemes, but a few encode
for things such as the presence of tone or nasal harmony in the phonology of the language.

Some regularization has been done on the phonologies, to make them easier to compare.
For example, /¢/ is replaced by /e/ whenever /e/ doesn't already exist, since the choice be-
tween /e/ and /¢/ may depend more on the linguist than on the language itself. Other infor-
mation such as language family and geography are discarded during analysis, but are used in
plotting results.
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STRUCTURE backwards and forwards

X Feature matrix

Barasana b t d kg s hw j °
Carapana pb t d k g s X W c
Guanano ptp b tht d tf khk g ? s hw j c
Karapana pb t d k g s hw j I
Macuna b t d k g s hw j ¢
Piratapuyo pb t d kg? s hw j ° S
Siriano pb td kg s hw j ¢ %‘)
Tanimuca pb t d k ? s hw j c 8o
Tatuyo pb t d k g hw j N =
Tucano prp bthtd khk g ? s hw j I =
Tuyuca pb t d k g s hw j c
Waimaha pb t d kg hw j °
Nukak pb t d cJ k g? h w c

Daw pb td ¢} kg?mmnn'nnyg §xhwwjj 1
Nadeb pb td ji kg?m n n gy [ hw j r

L features

Now I will discuss using the STRUCTURE model to analyze the SAPhon dataset. First I will
review the core of the model, and afterwards explore the effect of different priors on feature
frequencies and language ancestries.

Shown here is a binary matrix X containing a small subset of the data from SAPhon. For
legibility I print the phoneme when it is present, rather than printing a bunch of zeroes and
ones.



STRUCTURE backwards and forwards

set Overview P prior Qp

X Feature matrix, Z: Feature ancestries
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For each cell STRUCTURE infers a feature ancestry, which indicates the source for that cell. In
this example there are just two ancestries, blue and pink, but in general there may be more. This
assignment of feature ancestries is denoted by Z. In this example, all languages except Nukak
derive from just one ancestry. Nukak's inventory is analyzed as “mixed”, while the others are

upuren .

N languages
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbtttdtfcykkg?mmnnppnygs fxhwwijjcl 8
Tucanoan 17 8310017 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8§ 92100 0 100 0 100 0 3
Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50 :
X Feature matrix, Z: Feature ancestries
Barasana b t d k g s hw j I
Carapana pb t d k g s X 0w ] e
Guanano ptp b tht d tf khk g ? s hw j c
Karapana pb t d k g s hw j I
Macuna b t d kg s hw j r
Piratapuyo p b t d kg? s hw j c S
Siriano pb td kg s hw j ¢ §°
Tanimuca pb t d k ? s hw j e 8o
Tatuyo pb t d kg hw j I =
Tucano prp bthtd khk g ? s hw j I =
Tuyuca p b t d k g s hw j c
Waimaha pb t d k g hw j c
Nukak pb td ¢} kg? h w e
Daw pb t d c} kg ?mmnn pnyg fxhwwjj 1
Nadeb pb t d 3 kg?m n n g f hw j I

L features

STRUCTURE also infers K ancestral population, which are collectively denoted by P. (Each
ancestral population is also referred to as an ancestral inventory or a cluster.) Each ancestral pop-
ulation is a bank of numbers, one for each feature. Each number indicates the frequency with
which that feature appears in that ancestral population. This feature frequency corresponds to
frequency with which the feature appears in the subset of modern languages that derive from
the same ancestral population. For example, the feature frequency for /c/ in the pink ancestral
population is 67%. This corresponds to the fact that, of the three languages whose value for /c/
derives from the pink ancestral population (Nukak, Daw, Nadeb), two of them have it.

For the sake of exposition I have labeled the two ancestral populations Tucanoan and
Nadahup, though in reality STRUCTURE posits them with no regard to how linguists classify
languages. Note that STRUCTURE posits a certain amount of heterogeneity in each ancestral
population, as seen by the fact that not all of the feature frequencies are 0 or 100%. Nonethe-
less most of the feature frequencies are close to, if not actually, 0 or 100%, which means that
these ancestral populations are actually quite homogeneous, and this accords with the notion
that each ancestral population should have a distinct character.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbtttdtfcykkg?mmnnppnygs fxhwwijjcl 8
Tucanoan 17 8310017 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8§ 92100 0 100 0 100 0 3
Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50 :
X Feature matrix, Z: Feature ancestries
Barasana b t d k g s hw j I
Carapana pb t d k g s X 0w ] e
- Guanano ptp b tht d tf khk g ? s hw j c
- Karapana pb td k g s hw j c
7 Macuna b t d kg s hw j e
8 Piratapuyo pb t d kg? s hw j c S
8 Siriano pb td kg s hw j ¢ §°
& Tanimuca pb t d k ? s hw j e 8o
S Tatuyo pb td k g hw j r =
0 Tucano php b th t d khk g ? s hw j r <
3 Tuyuca p b t d k g s hw j c
& Waimaha pb t d k g hw j c
~ Nukak pb td ¢} kg? h w e
Daw pb t d c} kg?mmnn nn'yg fxhwwjj 1
Nadeb pb t d 3 kg?m n n g f hw j I

L features

STRUCTURE also infers N language ancestries, which are collectively denoted by Q. In the
abstract, each ancestry is simply a vector of K positive numbers that sum to one. I visualize
them with pies. As noted earlier, all of the ancestries are pure except for that of Nukak. The
ratio of pink to blue in its ancestry matches the ratio of pink to blue tiles in Nukak’s feature
ancestries.

The fact that most ancestries are pure accords with the principle that a model should be
parsimonious. For Nukak, however, it is better to posit admixture, since none of the alternatives
are appealing.

+ If we put Nukak with Tucanoan, it would be the only language to have /c/ and /3/, and
to lack /s/.

+ If we put Nukak with Nadahup, it would be the only language to lack phonemic nasals
and /f/.

+ If we put Nukak in its own cluster, we would be neglecting its similarity to both
Tucanoan and Nadahup.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbtttdtfcykkg?mmnnppnygs fxhwwijjcl 8
Tucanoan 17 8310017 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8§ 92100 0 100 0 100 0 3
Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50 :
X Feature matrix, Z: Feature ancestries
Barasana b t d k g s hw j I
Carapana pb t d k g s X 0w ] e
- Guanano ptp b tht d tf khk g ? s hw j r
-2 Karapana pb td k g s hw j c
7 Macuna b t d kg s hw j e
8 Piratapuyo pb t d kg? s hw j c S
8 Siriano pb td kg s hw j ¢ %‘)
& Tanimuca pb t d k ? s hw j e 8o
S Tatuyo pb td k g hw j r =
0 Tucano php b th t d khk g ? s hw j r <
3 Tuyuca p b t d k g s hw j c
& Waimaha pb t d k g hw j c
~ Nukak pb td ¢} kg? h w e
Daw pb t d c} kg?mmnn nn'yg fxhwwjj 1
Nadeb pb t d 3 kg?m n n g f hw j I

L features

Sample to obtain joint posterior distribution P, @, Z | X.

This is just one possible set of values for P, Q, and Z. Clearly others are possible, and
perhaps quite probable as well. Bayesian inference will sample from among likely values for P,
Q@ and Z to provide an estimate of the joint posterior distribution P, Q, Z | X.
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STRUCTURE backwards and forwards

K clusters

N languages

L features

For a better understanding of STRUCTURE, we need to look at the data in a generative way.
Let’s generate some data according to the STRUCTURE model. We start with the givens: K
clusters, N languages, and L features.
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STRUCTURE backwards and forwards

P: Ancestral inventories

prpbthtdtfcjjkhkg?mmnnnnnps {xhwwjj rl
Tucanoan
Nadahup

K clusters

N languages

L features

First we generate P, the feature frequencies.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)
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We draw K x L values for the feature frequencies from some prior distribution for P that
is yet to be described. Most of the values should be near zero or one.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbthtdtfcjjkhkg?mmnnnnnps {xhwwjj rl
Tucanoan 17 83100 17 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8 92100 0 100 0 100 O

K clusters

Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50

Barasana
Carapana
Guanano
Karapana
Macuna
Piratapuyo
Siriano
Tanimuca
Tatuyo
Tucano
Tuyuca
Waimaha
Nukak
Daw
Nadeb

(): Language ancestries
N languages

L features

We also generate Q, the feature ancestries.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbthtdtfcjjkhkg?mmnnnnnps {xhwwjj rl
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(): Language ancestries
N languages

L features

We draw N ancestries from some prior distribution for ) that is yet to be described. Most
of the ancestries should be pure or nearly so.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbthtdtfcjjkhkg?mmnnnnnps {xhwwjj rl
Tucanoan 17 83100 17 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8 92100 0 100 0 100 O

K clusters

Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50

7 Feature ancestries

Barasana
Carapana
Guanano
Karapana
Macuna
Piratapuyo
Siriano
Tanimuca
Tatuyo
Tucano
Tuyuca
Waimaha
Nukak
Daw
Nadeb

(Q: Language ancestries
N languages

L features

We consult @ to generate Z. For each language n and each feature I, we consult @y, to
generate Z,, the feature ancestry for each tile. Only for Nukak is there actually choice. Pink
and blue are chosen randomly, with probability proportional to the size of pink and blue in
Nukak's ancestry.
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STRUCTURE backwards and forwards

P: Ancestral inventories (feature frequencies)

prpbtttdtfcykkg?mmnnppnygs fxhwwijjcl 8
Tucanoan 17 8310017 100100 8 0 0 171009233 0 0 0 0 0 0 0 8 0 8§ 92100 0 100 0 100 0 3
Nadahup 0 100100 0 100100 0 67 100 0 100100100100 50 100 50 100 50 100 0 100 50 100100 50 67 50 50 50 :
Z: Feature ancestries, X: Feature matrix
Barasana b t d k g s hw j I
Carapana pb t d k g s X 0w ] e
- Guanano ptp b tht d tf khk g ? s hw j r
-2 Karapana pb td k g s hw j c
7 Macuna b t d kg s hw j e
8 Piratapuyo pb t d kg? s hw j c S
8 Siriano pb td kg s hw j ¢ %‘)
& Tanimuca pb t d k ? s hw j e 8o
S Tatuyo pb td k g hw j r =
0 Tucano php b th t d khk g ? s hw j r <
3 Tuyuca p b t d k g s hw j c
& Waimaha pb t d k g hw j c
~ Nukak pb td ¢} kg? h w e
Daw pb t d c} kg?mmnn nn'yg fxhwwjj 1
Nadeb pb t d 3 kg?m n n g f hw j I

L features

Finally we consult Z and P to generate the data X. For each language n and each feature
1, we first consult Z,,;, which is the feature ancestry for that tile. That tells us which ancestral
population to consult. We then consult Pz _,; (P indexed by Z,,; and I) to obtain the feature
frequency for X,,;, which we generate with a weighted coin toss.
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STRUCTURE core

'

Q Qn € AK-1 Ancestry of language n.

in language n.

Z Zn ~ Cat(Qyp) € {1,...,K} Ancestry of feature [
Py €10,1] Frequency of feature [
in population k.
K \'

X X ~ Bernoulli(Py, ;) € {0,1} Feature [ present in
language n?

N

This plate diagram is a more formal way to represent the model (see Bishop, 2006:363 for
more on plate diagrams). The plates, which are drawn with brown rectangles, indicate two
things. (1) They indicate the dimensions of the variables that they contain. (2) They indicate
that the elements of the variables that they contain are independently generated. For example,
the fact that P is inside the rectangles labeled K and L means that P has K x L elements.
These elements are generated independently from some (as yet unspecified) prior distribution.

The annotations to the right of each variable indicate the range of each element of the
variable. Each element of P, denoted by Py, falls in the interval [0, 1]. Each element of Q,
denoted by Qp,, is a member of A =1 which denotes the set of all ancestries with K elements.
Incidentally, each @, is actually a vector of K elements, but since these K elements must sum
to one, they are not independently generated. Hence, I do not enclose @ in the plate labeled
with K.

This diagram also describes how the variables are related. The expression Z,,; ~ Cat(Qn)
means that each Z,,; is drawn from a categorical distribution parameterized by Q,,, where
the probability of each outcome k is proportional to the kth element of Q. The expression
Xni ~ Bernoulli( Pz ,;) means that each X ,; is one with probability Pz, i, or else zero. The
generation of P and @ is unspecified, but will be discussed soon.
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STRUCTURE results preview

These are the results when STRUCTURE is fed SAPhon in its entirety. (Please zoom in to see
details.) On the right are pies showing the language ancestries for each language. (This is the
information contained in Q.) I use 36 colors to show the 36 largest ancestral populations. The
rest are lumped together and drawn with a dark gray.

STRUCTURE seems to be doing many things right. For example Nukak (‘mbr’, near the south
end of Colombia) is predominantly olive-colored. The olive cluster consists of most of the Tu-
canoan languages. Most of the rest of Nukak's colors are associated with the Nadahup languages
further to the southeast. This comports with the idea that Nukak has been influenced by both
groups in historical times (CITE).

Another example of a small success is the pie for Yénesha (‘ame’, in Central Peru) which
is colored yellow and pastel green. Yellow is the color of most Quechuan languages and pastel
green is the color of the Kampan Arawak languages in its vicinity. This comports with what
we know about Ydnesha as a genetically Arawak language in the foothills of the Andes that has
been heavily influenced by Quechuan (CITE).

On the left are two bits of information. At the top (where there are bars of one color) I
show the 36 largest ancestral populations. To the left of each bar, I print the language that
best exemplifies the ancestral inventory. To the right I show the feature frequencies for each
feature with the color of the letters. (This is the information contained in P.) Features with
feature frequencies in the second, third, and fourth quarters of the interval [0,1] are colored,
respectively, light blue, blue, and black. Note that these ancestral inventories look more or less
like real inventories.

Further below on the left I display language ancestries using bars rather than pies. The lan-
guages have been sorted by family, and it is possible to tell using this plot that Arawak phonolo-
gies are quite diverse, while Carib or Quechuan phonologies are much less so.
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Naive feature frequency prior

EE—
Basic frequency of nelo0,1] ON QQ
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Frequency of feature Py ~ Beta(Ap, A(1 — ) € [0,1] P

in population k.

. KT,

feature [ present X ~ Bernoulli(Pz, ;) € {0,1} .X .

in language n? —

(. /‘J

Among the simplest possible priors for P is to draw each element independently from the
same beta distribution. The next slide explains the peculiar way in which the beta distribution
as been parameterized.



STRUCTURE P prior
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The mean of each distribution is given by u, while A determines how concentrated the
mass is. A high A yields feature frequencies that are all close to u, while a low X yields feature
frequencies that are close to zero or one. Since most features are rare, we would expect p to be
low in real life; and since ancestral populations should be relatively homogeneous, we would
expect A to be low as well. When we allow the model to estimate 11 and ), that’s exactly what
we get.



Dataset Overview P prior Q r Visualization

Improved feature frequency prior

Shape parameter for universal ~ p € (0, 00) 4
feature frequencies. Q o)
4 ¢ N\
Universal frequency of feature I. i ~ Beta(p,1) € [0, 1] Iz l
Heterogeneity parameter. A€ (0,00) O)\\ 7
Frequency of feature [ Py ~ Beta(Ap, A(1 — ) € [0,1] O<
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. . KT
Feature [ present in language n? X, ~ Bernoulli(Pz, ;) € {0,1} .X N
= Y
L
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We can improve the prior by respecting the fact that when we consider each feature indi-
vidually, its frequency in each ancestral population will tend to be correlated. That is to say,
Py, Pay, . . ., Piy will tend to reflect some universal feature frequency for feature [. To model
this, we can posit a universal feature frequency ; for each feature, and generate p1, ..., pr
from a beta distribution parameterized by p;.

This prior is a special case of the prior in the model with correlated allele frequencies discussed
in the appendix of Pritchard et al. (2000).
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STRUCTURE with naive feature frequency prior

Mean  95% HPD

Diversity v 214 [16.4, 26.3]
Admixture a 0835  [0.731,0.957]
Feat. freq. mean p  0.102  [0.095,0.109]
Heterogeneity A 0.069  [0.054,0.084]
# Clusters 51.6 [45, 58]

This result is from using the model with the simple prior for P. Starting from the 25th
inventory (exemplified by Karajd) the ancestral inventories are impossible in real life, as they
have low feature frequencies for common sounds, and large collections of rare sounds that are
unlikely to co-occur in a single population (see top-left of figure).



Dataset Overview Pprior Qp

Mean  95% HPD

Diversity v 340 [24.5, 46.2]
Admixture a 0490  [0.407,0.565]
Feat.freq.shape p  0.287  [0.251,0.319]
Heterogeneity A 0.234  [0.190,0.278]
# Clusters 69.6 [61, 76]

This result is from using the more sophisticated prior for P. There are no longer implau-
sible ancetral inventories as in the previous slide, because having estimated universal feature
frequencies p1, . . . , pr, makes it hard to have low Py; common features and high Py; for rare
features.
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Dirichlet ancestry prior

Oa\ a € (0,00) Admixture parameter.
—

N Q Qn ~ Dirichlet(£) € AK-1 Ancestry of language n.

in language n.

?Z Zp ~ Cat(Qn) € {1,...,K} Ancestry of feature [

. I Py €[0,1] Frequency of feature [
in population k.
)T . .
'X X1 ~ Bernoulli(Py, ;) € {0,1} Feature [ present in
. language n?
N
(. l‘)

The simplest kind of prior for Q is a Dirichlet distribution, from which “pies” can be drawn
independently, one for each language. The next slide illustrates the significance of the param-
eter . The factor of % need not concern us right now, as K is a constant.



iew P prior Qprior

Draws from Dirichlet($) with K = 4

o = 100.0

«
K

-0 @ QOO0 00
-0 09@® OO0 0
-1 (AGO0COVINGE
S INB RD IVIFIFE I I
\FEDDERNDE B D IVE

o =100

Each row shows multiple draws from a different parameterization of a Dirichlet distribution.
The first row shows that when « is small, one gets mostly pure ancestries, and even when
there is a second element, it is unlikely that there is a third. The next two rows show that as «
increases, so does the amount of admixture in the pies that get drawn. When « is very high as
in the last row, there is a nearly equal K-way split in each pie.

We can think of «v as a parameter that determines how much admixture there is to be in
the language ancestries. I mentioned before that in a parsimonious model, language ancestries
should be relatively pure. It's good, then, that when the model is used to estimate «, it is quite
low.

How can we improve on this prior for Q? One unsatisfactory thing about the prior is that it
assumes that there are K equally-sized clusters. (A wedge of any color has a mean size of % )
On the other hand, our data probably does not consist in K equally-sized clusters, no matter
how large we set K to be. If we lined up the clusters from the largest to the smallest, we would
find that they are of unequal sizes, and there would be a large number of very small clusters at
the end. Given that this is a clustering model with admixture, the smallest clusters may consist
in no more than a few sounds in one or two languages.

The first step to modeling clusters of unequal sizes is to use an asymmetrical Dirichlet dis-
tribution.
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An asymmetrical Dirichlet distribution is just like a symmetrical Dirichlet distribution, ex-
cept that there are now K parameters. Each parameter corresponds to a color, and the mean
size of a wedge of that color is proportional to it.

These distributions have been parameterized so that the parameters always have the ratio
4 :3:2: 1. Ivary a multiplier @ and draw repeatedly from each distribution. As expected,
in each case, there is about four times as much red as there is blue, three times as much yellow,
and twice as much green. As before, a small « leads to one color preponderating, and a large «
leads to pies that are divided almost exactly according to the 4 : 3 : 2 : 1 ratio.

We can use an asymmetrical Dirichlet distribution to generate language ancestries, but how
do we generate the parameter ratio? We use another Dirichlet distribution, of course.
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Hierarchical Dirichlet ancestry prior

O”f\ v € (0,00) Diversity parameter.
7 7 ~ Dirichlet(%) € AK~! Relative cluster sizes.
Oa\ a € (0,00) Admixture parameter.

7
~
Q Qn, ~ Dirichlet(amy, ..., ark) € AK-1
Ancestry of language n.
( l N\
A Zni ~ Cat(Qn) €{1,...,K} Ancestry of feature
in language n.
. Py €[0,1] Frequency of feature |
in population k.
~
'X X1 ~ Bernoulli(Pyz, ;) € {0,1} Feature ! present in
) language n?
N
. L)

In the hierarchical Dirichlet ancestry prior, I use an asymmetrical Dirichlet distribution to
generate language ancestries, and I use another Dirichlet distribution to generate the asym-
metry. The ratios between cluster sizes is denoted by m = (71, ..., Tk ), whose elements sum
to one. Language ancestries are independently drawn from Dirichlet(any, ..., ark), and =
is drawn from a symmetrical Dirichlet distribution parameterized by 7.

The next two slides will show the effects of varying v and K. It will be seen that as K’ — oo,
the distribution Dirichlet( ) converges in an important respect.
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Sorted draws from Dirichlet() with K = 100
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Each row shows multiple sorted draws from a different parameterization of a Dirichlet dis-
tribution. The ancestry elements have been sorted so that red is always used for the largest
element, yellow for the second largest, etc. The largest nine elements each have their own
color, and the rest are lumped together as gray.

As expected, when ~ is small, red preponderates, but the pies become more finely divided
as - increases. We can regard +y as a diversity parameter that determines how fragmented the
languages are.
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Sorted draws from Dirichlet(2)
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The size of ith largest slice converges in law as K — oo.

Now ~ is fixed at 5, and K is varied. Note that there is no observable difference between the
distributions for K = 100 and K = 1000. The upshot is that for any value of v, it does not
matter what K is set to as long as it is set large enough. This is suited to modeling a dataset such
as SAPhon, where it does not make sense to think of diversity in terms of how many clusters
there are (since they tail off into lots of small ones), but rather in terms of how quickly the
cluster sizes tail off, as governed by ~.

Of theoretical interest is that as K — oo, the hierarchical Dirichlet prior converges to
well-studied objects in probability (Teh et al., 2006).
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STRUCTURE Dataset Overview

STRUCTURE with simple Dirichlet ancestry prior (K = 90)

Mean  95% HPD

Admixture a 0423 [0.354,0.487]
Feat.freq.shape p  0.260  [0.229,0.290]
Heterogeneity A 0165  [0.127,0.204]

P

This is the outcome of using a simple Dirichlet prior for Q. K = 90 is the setting that
approximately maximized the marginal likelihood, using the inference method for K given in
the appendix of Pritchard et al. (2000). (K = 90 was better than K = 80 or K = 100.)
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Mean  95% HPD

Diversity v 340 [24.5, 46.2]
Admixture a 0490  [0.407,0.565]
Feat.freq.shape p  0.287  [0.251,0.319]
Heterogeneity A 0.234  [0.190,0.278]
# Clusters 69.6 [61, 76]

This is the outcome of using the hierarchical Dirichlet prior. (We've seen this twice before.)
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Cluster size histograms

Language family sizes
Hierarchical Dirichlet Q-Prior

30

10

Cluster size in languages
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» The simple prior splits too aggressively with large clusters.
» The hierarchical prior may lump too aggressively with small clusters.

On this plot are superimposed three things:

+ The cluster sizes that result from using the simple Q-prior, in blue.

+ The cluster sizes that result from using the hierarchical Dirichlet Q-prior, in red.
+ And for reference, a histogram of language family sizes, in black.

The simple Q-prior prefers clusters of similar sizes, as can be seen from the relative flatness of
the blue histogram. If the language family classifications are anything to go by, it's probably
the case that the simple Q-prior splits large clusters too aggressively. It also seems to have too
wide of a tail, with too many clusters consisting of 2 to 5 languages. The hierarchical Dirichlet
Q-prior follows the language family classifications more closely, though perhaps its tail tapers
too quickly.

I lack accurate marginal likelihood estimates for the priors, but browsing the results, I see
places where one or the other is better. For example, the simple prior breaks the Quechuan
languages up into too many clusters; but the hierarchical Dirichlet prior proposes some im-
plausible connections that the simple prior does not, such as between Cabiyar{ and Pémono,
about which more will be said later.

Finally, I should mention that the simple prior has one more disadvantage, which is that
with it, the analyst has to do multiple runs to find the optimal value for K. This is a considerable
weakness, as each run takes about a month on a fast machine.
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Inter-family feature-sharing frequency, by distance

» Let’s plot a subset of these language pairs on a map.

99, 95, 50%ile

&
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This is another way to understand the results of the STRUCTURE analysis. Each dot repre-
sents a pair of languages that are not in the same family. The x-axis is the distance between
them, in kilometers, and the y-axis is the mean fraction of features that they share the same
source for. Also shown are quantile lines, conditioned on inter-language distance. There are
three reassuring things in this plot.

+ The median is very small. Essentially, two languages from different families, chosen at
random, do not share the same source for any sounds.

+ The median does not get higher as the distance gets smaller. This means that
STRUCTURE results does not simply recapitulate geography.

+ The higher quantile lines do get higher as the distance gets smaller. This means that
proximity makes it likelier for two languages to have been in contact, and STRUCTURE
was able to infer this, despite having been given no geographical information.

Naturally we would like to know which pairs of languages are high in the plot. What I will do,
is plot on a map a line between two languages if they share the same source for many of their
features. I cannot do this for too many pairs of languages without creating an unreadable plot,
so I will do it for the arbitrary subset of the dots shown in blue. For languages that are near each
other, I will plot them if they share the same source for 10% of their features; and I increase this
threshold as the distance gets larger.



Dataset Overview P prior Q r Visualization

This ‘line plot’ is an alternative to the pie plot
that throws inter-family connections into re-
lief. Inter-family connections are drawn in
color; intra-family connections are in light
gray. A line between two languages means that
one has borrowed from the other; or that they
both obtained features from a third source.
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This plot provides backing for some proposed
South American linguistic areas. Four appear
in this slide. However, these linguistic areas
are often obscured by lines that run longer dis-
© tances. For example, the Vaupes is obscured
by amber-colored lines, which denote pairs that
© share the same source for 80 to 90% of their fea-
tures. It turns out that these connections are
specious.
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Cabiyari and Pémono

» Cabiyar{’s inventory is not too unusual for an Arawak language.

» Pémono’s inventory is very typical for a Carib language.

. ; ,
Cabiyarf Pémono

Consonants Bilabial | Dental | Alveolar :3Z:Iar Palatal | Velar | Glottal Consonants Bilabial | Alveolar | Palatal Velar Glottal

Stop/afiricate p t t tj k 7 Stop p t k ?

Fricative h Fricative s h

Nasal m n Nasal m n n

Approximant w j Approximant w j

Tap, flap ¢ Tap, flap ¢

Vowels Front | Central | Back Vowels Front | Central | Back

High i u High i i u

Mid e o Mid e |a o

Low a Low a

» STRUCTURE puts them in the same cluster. 86% of their features are
deemed to come from the same ancestral population.

Let's have a look at a particularly egregious false positive: the supposed connection be-
tween Cabiyar{ and Pémono. STRUCTURE reckons that these two languages share the same
source for 86% of their features. Their inventories do not seem particularly close, but STRUC-
TURE lumps them together because it does not realize that Arawak phonological inventories
are very diverse, and Cabiyar{’s ancestry suffices to explain its inventory without the need to
posit borrowing. (Recall that STRUCTURE is not given information on a language's classifica-
tion.)



Relaxed Admixture Model (RAM)

From STRUCTURE to RAM:

» Make use of linguistic classifications, to weed out spurious connections
such as between Cabiyar{ and Pémono.

» Posit relaxed admixture in order to detect areas such as Upper Xingd.

Relaxed admixture: a model of contact where features can be gained, but not
lost, due to contact.

» Clearly not realistic.

» Nukak lacked phonemic nasal stops, presumably due to influence from
Tucanoan languages.

» Ashéninka (Apurucayali) lost mid vowels, presumably due to contact with
Quechuan languages.

» But, useful for detecting mild and recent contact.

The Relaxed Admixture Model (RAM) is an attempt to take a step back, by using a model
that is more modest than STRUCTURE in scope, but targets some of its shortcomings. Rather
than seek to model the entire dataset coherently, as STRUCTURE does, RAM looks at pairs of
languages only, and asks, if this were the only contact scenario in all of South America, how
much explanatory power do we gain by positing it? Unlike STRUCTURE, RAM is given the lin-
guistic family for each language, and it employs a simple model for how a language gets its
features from its family.

RAM was designed to be sensitive to recent contact, and so it holds that the presence of
a sound can be borrowed, but that the absence of a sound cannot — a property that we (Lev
and 1) termed relaxed admixture. We were banking on the notion that gaining a sound can easily
happen in instances of superficial contact, but that losing a sound often meant a structural
change in the phonology of the language, which necessitates more intense contact.

Relaxed admixture is clearly naive — as noted here concerning Nukak and Ashéninka — but
it does prove useful.
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Model M: Inheritance only

4 \
Universal frequency of w €(0,1) Iz
feature I.
Generality of universal A€ (0,00) .)\\
feature frequencies. ~_
Frequency of feature l in this P, ~ Beta(Apy, A(1 — 1)) € (0,1) ' P
family.

Feature [ in target language ~ X(; ~ Bernoulli(P;) € {0,1}

Feature [ in language n, which X,,; ~ Bernoulli(P;) € {0,1}
is in the target’s family.

> Model M, explains X as the result of inheritance alone.

> Universal feature frequencies y1, . . ., pu, and generality parameter ) are fixed
based on previous runs of STRUCTURE.

> 1 and A are significant when the family is small, or when the target is an isolate.

A RAM analysis is set up as a model evaluation problem. For each pair of languages, one
acting as potential donor and the other as potential target, we propose two models: one with
contact, and one without. Here is the null hypothesis — the model without contact. X is the
target inventory. Each feature is generated via a Bernoulli distribution, parameterized by a
feature frequency that is obtained by analyzing all the members of the language family. There
is not enough data to infer the hyperparameters p and A, so these are inferred from a run
of STRUCTURE and fixed in this model. They become quite important when the target is a
linguistic isolate, or is from a small family.



Model M : Relaxed admixture model (RAM)

Qu o ~Beta(3,3) € (0,1) Admixture parameter.

-
./\\ ?Z Z; ~ Bernoulli(a) € {0,1} Can feature [ be borrowed?

Y; € {0,1} Feature [ in donor language.

Xo =1ifZ,=1andY; =1, Feature!in target language.
{Xm ~ Bernoulli( P;) otherwise.
Xy ~ Bernoulli(P;) € {0,1}  Feature [ in language n, which
is in the target’s family.

> Model M, explains X, as the result of inheritance and borrowing from Y.
> Only the presence of a feature can be borrowed.

> Admixture parameter « denotes the fraction of features present in Y that are
borrowed into X.

The alternative hypothesis is that the target inventory Xy is a product of both inheritance
and borrowing. The variable Z is binary vector, with Z; = 1 if X may borrow feature [ from
the donor inventory Y. The feature is actually borrowed only if the feature is present in Y,
ie.ifZy =1andY; = 1.
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Borrowing score

@

Mo: Just inheritance. M : Borrowing too.

> Which model explains X, better? Compute the Bayes factor.

oo PXo [ M) 3o 2 p PP oy X, XolA, p, M)
P(Xo | Mo) > P(P, X, Xo|A, p, Mo)

> Use log K as a borrowing score for each donor-target pair.
> Note: M for one donor-target pair may be incompatible with M for another.

Both models are simple enough that their marginal likelihoods P(Xg | M1) and P(Xo |
M) can be computed exactly. We take the log of the Bayes factor as a borrowing score, which
indicates how advantageous it is to posit borrowing. When the borrowing score is greater than
zero, the alternative model is favored. It is important to keep in mind that unlike STRUCTURE,

RAM is a local model: the M for one donor-target pair is not necessarily compatible with the
M for another.
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Inter-family borrowing scores by distance

» For any pair of languages not in the same family, plot the larger
borrowing score.

99, 95, 50%ile

0 1000 2000 3000 4000 5000 Distance (km)

This plot shows, for each pair of languages not in the same family, the higher of the two
borrowing scores involving the pair, plotted against the distance between the pair in kilome-
ters. Also shown are quantile lines, conditioned on distance. Again there are three things about
this plot that seem right.

+ The median line is well below zero. Two languages chosen at random will be unlikely to
have a positive borrowing score.

+ The median line is relatively flat, indicating that borrowing score is not merely a
function of proximity.

+ The higher-quantile lines get higher as the distance decreases. RAM finds that the
closer two languages are, the profitable it is to posit borrowing.

Also, RAM does not yield false positives like Cabiyar{ and Pémono. That particular pair has been
plotted as a red circle. It can be seen that its borrowing score is negative. RAM accounts for the
fact that Awarak is a diverse language family, so that inheritance suffices to explain Cabiyar{’s
features.

As with STRUCTURE, it is possible to plot higher borrowing scores as lines on a map. I do
this for the arbitrary subset of dots colored blue.
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Gone are many of the distracting false positives
seen in the line plot for STRUCTURE.
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The proposed linguistic areas appear more
clearly on this plot.
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Borrowing in Upper Xingt: Nasal vowels

Segments identified by RAM as likely borrowed,
contingent on contact:

Donor Target

Kamayurd (T)  Waura (A) Peiudi
Panara (Ge) Waura (A) iéaiai

Aweti (T) Waura (A)  yiéuidi

Suya (Ge) Waura (A) yiéaiai
Kamayurd (T)  Kuikuro(C) tsnoieaia
Awet{ (T) Kuikuro (C) tsyngoicaial
Panara (Ge) Kuikuro(C) o6iéaia

Suya (Ge) Kuikuro (C) ypoiéuia
Tapayuna (Ge) Kuikuro(C) noiédia

Feature frequencies for nasal vowels in S. America:

Xavante

Macro-Ge ~55% Carib ~16%
Tupian ~85% Arawak ~16%

This is a blowup of the Upper Xingu. For each pair of languages in the table, RAM was made
to print out the features most likely to have been borrowed, contigent on there having been
borrowing between the pair of languages.

One useful characteristic of probabilistic generative models is that one can examine the
marginal distributions for any underlying variable. Here, we seek features [ such that the pos-
terior expecation of borrowing E(Z;| Xo, X, Y, , A, M) is high.

In the results we see that RAM deems nasal vowels to have been borrowed into the Arawak
and Carib languages of the Upper Xingd. This makes sense, given that they occur infrequently
in Arawak and Carib languages in the continent as a whole.

Note that RAM suggests several candidate donors for each target. While it is impossible
to decide which languages were the actual donors, it is entirely plausible that this kind of ex-
change has been taking place.
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Borrowing in Upper Xingu: /i/

contingent on contact:

Donor Target
Kamayurd (T)  Waura (A)
Panara (Ge) Waura (A)
Awetf{ (T) Waura (A)
Suya (Ge) Waura (A)
Kamayurd (T)  Kuikuro (C)
Awet{ (T) Kuikuro (C)
Panara (Ge) Kuikuro (C)
Suya (Ge) Kuikuro (C)
Tapayuna (Ge)  Kuikuro (C)

Xavante

Macro-Ge ~70%
Tupian ~92%

Segments identified by RAM as likely borrowed,

notcura

Feature frequencies for /ts/ in S. America:
Carib ~90% Arawak ~30%

Similarly, RAM infers that /i/ was borrowed into Waura, an Arawak language. Its frequency

in Arawak languages elsewhere is relatively low.
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Borrowing in Upper Xingu: /ts/

Segments identified by RAM as likely borrowed,
contingent on contact:

Donor Target

Waura (A) Kuikuro (C) ytsiéaail
Kamayurd (T)  Kuikuro (C) tsnioénal
Awet{ (T) Kuikuro (C) yespiaail
Mehinaku (A)  Kuikuro (C) tstéaial
Waura (A) Kamayurd (T) ts

Waura (A) Aweti (T) ylts

Feature frequencies for /i/ in S. America:

Arawak ~63% Carib ~3%
Macro-Ge ~7%
Tupian ~15%

Xavante

And finally, RAM infers /ts/ to have been borrowed into various Carib and Tupian languages
in the region.

In general, RAM is most useful for investigating linguistic areas where languages have just
begun to influence one another. The Upper Xingt is not the kind of linguistic area that is de-
fined by distinctive features that are not found anywhere else — at least in its phonological
inventories. If we simply plot the occurrence of various features on a map, the Upper Xingd
will fail to appear. Nor is the Upper Xingti an area of obvious homogeneity. The best way to de-
tect it is to look for convergence between its languages, against the backdrop of their respective
genetic profiles.
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POLLEX: Polynesian Lexicon Project

» http://pollex.org.nz/

» An etymological word list for
Polynesian languages and a

Polynesian Lexicon Project Online

Protoform: QAROFA.A [MP] Love, pity,

small number of Oceanic compassion
nelghbors (B' Blgg51 R. Clark) Descrlntlon:A Love, pity, compassion
» 40+ languages, 4000+ etyma, - S T T o
407000+ forms' =7 Cf. PPN =qofa "greeting"
» Reduce to abinary N x L Pollex entries:
triX Language Reflex Description Source
ma . Anuta Aropa Pity, compassion (Yen)
East Futuna 2Alofa-2ia Love, pity, compassion (Bas)
» N etyma, L languages. Eastuea  20fa Amitie, affection, amour, faveur en)
East Uvea 2Alofa Salut (Reh)
» Each entry encodes whether e T [y ——
etymOl’l n iS attested in Emae Faka/arofa Poor (Clk)
Fijlan Garo Desire Problematic  (Col)
language I. T E— o
» Treat cognates and loans the
same.

And now, I will transition abruptly to talking about ETYMDIST, starting with the dataset to
be analyzed.

POLLEX consists of data of a much different sort than SAPhon, but we will still reduce it
to a binary matrix, with each entry denoting the presence or absence of a particular etymon
in a particular language. However, the matrix is transposed, in the sense that the languages
run along the top rather than down the side. Accordingly, I write L languages (rather than
N languages as before) and N etyma, as a way to intimate that ETYMDIST clusters by etyma
rather than by languages.
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ETYMDIST overview

» Take observed distributions of etyma in POLLEX, e.g.:

*qariki ‘chief’ *qarofa ‘love, pity, compassion’

NGR

8 88

» Infer actual distributions, using some model of lexicographic coverage.

» Cluster etyma by posited actual distributions.

ETYMDIST clusters etyma by each etymon’s distribution, i.e. its pattern of presence or ab-
sence among the languages. We distinguish between observed distributions and actual distribu-
tions.

The observed distribution of an etymon is the set of languages for which the etymon is
attested in POLLEX. In this slide I show the observed distributions of two etyma. The languages
have been laid out roughly geographically.

The actual distribution of an etymon is a matter of inference, based on a simple model of
the amount of lexicographic coverage received by each language. ETYMDIST will cluster etyma
by what it infers their actual distributions to be.
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ETYMDIST results
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The results are shown here. Each plot is a cluster of etyma. The size of the cluster (i.e. the
number of etyma that participate in the cluster) is given in the caption. The geographical extent
of the cluster is shown by the map. A language that is colored red means that all of the etyma
in the cluster are posited to exist in the language. A language that is colored orange-yellow
means that half of the etyma in the cluster are posited to exist in the language.

The membership of each etymon is probabilistic: an etymon may be in a cluster with less
than probability one. The histogram below each map shows the probability of membership
for the thousand etyma with the highest probabilities of membership. A slow drop in the his-
togram, as in the first cluster, indicates that the category has “fuzzy boundaries”; whereas a
sharp drop, as in the second cluster, indicates that it is relatively clear-cut which etyma belong
to the cluster.

Before examining some of these clusters in detail, I will first describe how ETYMDIST works.
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ETYMDIST rationales

Why not just use STRUCTURE?

» Q: Why not just throw the binary matrix into STRUCTURE, treating
etyma like features in SAPhon?

» A:Etyma presence is not homoplastic. Can the same etymon really arise
from more than one ancestral population?

» Q: Why not use STRUCTURE, but treat each etymon as a SAPhon
language, and each language as a SAPhon feature?

» A: Clustering with admixture is strictly more complex than ETYMDIST,
which is pure clustering. Still, it could be worth trying.

In any case, we'd have to build into STRUCTURE the concept of lexicographic
coverage.

Ishould start by explaining why I didn't just use STRUCTURE to analyze POLLEX. The answer
is that I did not want to treat etyma the same ways as I treated phonemes in SAPhon, because
I did not want an analysis that permitted etymon state to be homoplastic. That is, I did not
want the model to allow an etymon to come from more than one ancestral population. This is
quite different than how it is for phonemes — a good model has to posit /t/ in all or nearly all
ancestral populations. But in the case of etyma, I wanted each etymon to be accounted for by a
single ancestral population. This is why ETYMDIST clusters by etymon rather than by language.

One way to cluster by etymon would be to feed STRUCTURE a transposed data matrix, but I
wanted to do simple clustering rather than clustering with admixture, in part because I could
not think of a reasonable interpretation for clustering with admixture when the data matrix
was transposed.
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ETYMDIST

Qo O € (0,1)
I Intensity of class k in language .
3y
' )
Oz\ zmed{l,... K}
~ Class of eytmon n.
QOw wyy € {0,1}, wyy ~ Bernoulli(d,, ;)
Is eytmon n actually in language [?
L N)
\. [’ J/

This is the heart of the model. The variable z,, denotes the cluster to which etymon n
belongs. Each cluster k is defined by a bank of intensities 01, . . . , 01, one for each language
l. The intensity 0y, denotes the probability that an etymon of class k will exist in language .

The variable w is an N x L binary matrix, with each entry w,,; denoting whether etymon
n exists in language [. To generate w,,, first look up the cluster of the etymon z,, then look
up the intensity of that cluster in that language (6,,;, i.e. 6 indexed by z, and [), and then
perform a weighted coin toss.
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Dataset Design Results

Ok € (07 1)
Intensity of class k in language .

a € (0,00)
Diversity parameter.

¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.

zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.

wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?

The cluster variables z, are generated via a categorical distribution parameterized by the
relative cluster sizes ¢. This in turn is drawn from a Dirichlet distribution parameterized by
a/ K. So that the number of clusters can be inferred from the data, K is set to infinity. (In the
implementation of the model, z is generated by a Chinese restaurant process parameterized by

)
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Dataset Design Results

A e (0,00), ) € (0,1)
Hyperparameters for intensity.

Ot € (0,1), Ojy ~ Beta(u@AO) (1 — u@)A@)
Intensity of class k in language .

a € (0,00)
Diversity parameter.

¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.

zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.

wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?

The intensities are all generated from the same beta distribution, parameterized by A(?)
and (9. 1 strongly suspect that there are easy ways to improve this prior, but I have yet to

think of any.
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Dataset Design Results

A e (0,00), ) € (0,1)
Hyperparameters for intensity.

Ot € (0,1), Ojy ~ Beta(u@AO) (1 — u@)A@)
Intensity of class k in language .

a € (0,00)
Diversity parameter.

¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.

zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.

wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?

Tyl € {0, 1}
Is etymon n observed in language {?

The difference between actual and observed distributions is the difference between w and
x. The variable x,,; indicates whether etymon n is attested in language [. 1t is a function of

wy,;, but also of ...
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Dataset Design Results

A e (0,00), ) € (0,1)
Hyperparameters for intensity.

Ot € (0,1), Ojy ~ Beta(u@AO) (1 — u@)A@)
Intensity of class k in language .

a € (0,00)
Diversity parameter.
¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.
zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.
wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?
Yni € {Ov 1}
Observability of etymon n in language [.
Ty € {07 1}5 Tpl = Wnl * Ynl
Is etymon n observed in language {?

..Yni, which indicates whether an etymon n in language [ would be observable, if it were
already to exist in language [.
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Dataset Design Results

A e (0,00), ) € (0,1)
Hyperparameters for intensity.

Ot € (0,1), Ojy ~ Beta(u@AO) (1 — u@)A@)
Intensity of class k in language .

& € (0,1)
Coverage for language .
a € (0,00)
Diversity parameter.
¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.
zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.
wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?
yni € {0,1}, yp ~ Bernoulli(§;)
Observability of etymon n in language [.
Ty € {07 1}5 Tpl = Wnl * Ynl
Is etymon n observed in language {?

Each y,,; is derived via a Bernoulli distribution parameterized by the lexicographic coverage

for language [, &;.
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A0 € (0,00), @ € (0,1)
Hyperparameters for intensity.
B0 € (0,1), Oy ~ Beta(uOA®) (1 — u®)X®))
Intensity of class k in language .
A9 € (0,00), ¥ = 0.9N;/ max{Ny, Na, ..., Ny}
N, = #entries for language [.
§ € (0.1), & ~ Beta( " A, (1 - i)A©)
Coverage for language .
a € (0,00)
Diversity parameter.
¢ € AK=1 ¢ ~ Dirichlet(a/ K)
Relative cluster size.
zn €4{1,..., K}, 2y ~ Cat(¢)
Class of eytmon n.
wy € {0, 1}, wy; ~ Bernoulli(6,,;)
Is eytmon n actually in language [?
yni € {0,1}, yp ~ Bernoulli(§;)
Observability of etymon n in language [.
Tnl € {07 1}, Tnl = Wnl * Yni
Is etymon n observed in language {?

It stands to reason that &; correlates positively with Nj, the number of forms in POLLEX
for language [. This correlation is encoded via a beta distribution. The degree of correlation is
encoded in the hyperparameter A(),

Note 1: One reason that the correlation is imperfect, is that for non-Polynesian languages
in POLLEX, the lexicographic coverage is much higher than N; would suggest. The reason is
that POLLEX selectively contains etyma that appear in Polynesian languages, which artificially
limits the IV} for non-Polynesian languages.

Note 2: Supplying the model with some knowledge of N; seemed critical for getting the
model to learn reasonable values for &;; or perhaps I did not try hard enough to get it to work

without NV;.
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Hawaiian

» Traditionally Hawaiian is classified with MQA and MVA as a Marquesic
language, but lexically it is very mixed.

» Hawaiian may have participated in up to three Eastern Polynesian dialect

chains.
Southern chain Northern chain Eastern chain
NKO KAP HAW NKO KAP HAW NKO KAP HAW
NGR TAK OJA NGR TAK OJA NGR TAK OJA
SIK. ECE TOK|PEN MQA SIK ECE TOK|PEN MQA SIK ECE TOK| PEN .
REN PIL TIK ANU EUV PUK TUA REN PIL TIK ANU EUV PUK TUA REN PIL TIK ANU EUV PUK TUA
MFA MAE EFU SAM|RAR TAH MFA MAE EFU SAM .. MFA MAE EFU SAM|RAR TAH
WUV WFU TON NIU |MIA MVA WUV WFU TON NIU | MIA MVA WUV WFU TON NIU | MIA .
. EAS MAO EAS MAO EAS
546 etyma, 261 at 90% 226 etyma, 65 at 90% 88 etyma, 24 at 90%

And now for a rundown of some interesting clusters. Hawaiian is conventially classified as
subgrouping with Marquesan (MQA) and Mangarevan (MVA), but these clusters suggest that
Hawaiian participated in three Eastern Polynesian dialect chains. Moreover, Hawaiian was not
the only language to do so: Tuamotoan, and perhaps Tahitian, seem to be part of all three as
well.
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Northern Outliers

» Polynesian Outliers are geographically Micronesian or Melanesian.

» The Northern Outliers may form a genetic subgroup with Eastern
Polynesian languages.

0 @ ]

REN (PIL (TIK ANU ROT|EUV

0B w®- OB

WUV . WYA TON NIU . .

159 etyma, 27 at 90% 47 etyma, 20 at 90%

The cluster on the right shows etyma that were retained in the Northern Polynesian Out-
liers (NKO, KAP, NGR, TAK, OJA, SIK) and Eastern Polynesia, but were mostly absent in Western
Polynesia. This pattern may have come about due to genetic descent: there is comparative
evidence that the Northern Outliers and the Eastern Polynesian languages share a common
ancestor to the exclusion of other languages (Wilson, 1985).

The cluster on the left looks similar to the one of the right, but now the etyma are robustly
present in Western Polynesia. My guess is that it consists of etyma that were widespread in
Polynesia, but were partially lost in the Southern Polynesian Outliers of Vanuatu and New Cale-
donia (MFA, MAE, WUV, WFU).

It is a bit unsatisfactory that two clusters that look so similar should receive such different
interpretations, but I lack a better explanation for these results.
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Lexical borrowing in Western Polynesia

» Polynesian splits into Tongic (TON & NIU) and Nuclear Polynesian (the
rest).

» These patterns reflect borrowing between the two subgroups in
geographical Western Polynesia.

NKO KAP HAW NKO KAP HAW
NGR TAK OJA NGR TAK OJA
SIK ECE TOK|PEN MQA SIK .. PEN MQA
REN PIL TIK ANU . PUK TUA REN PIL [TIK ANU ROT . PUK TUA
MFA MAE| '] . SAM RAR TAH MFA MAE| FIJ .. RAR TAH

WUV WFU . NIU | MIA MVA
MAO

EAS

LT

341 etyma, 103 at 90%

WUV WFU . NIU | MIA MVA
MAO

EAS

\

279 etyma, 58 at 90%

Western Polynesia (consisting of ECE, TOK, EUV, PUK, EFU, SAM, TON, NIU) has been a locus
of long-standing cultural exchange. These two clusters show etyma that have diffused though-
out the region as a consequence of that exchange. One could alternatively argue that these
clusters consist of Proto Polynesian etyma that were conserved in the Western Polynesian lan-
guages, but lost elsewhere; but this is not plausible when the etyma number in the hundreds.
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Most stable cluster members

» Definition: an etymon’s degree of membership is its posterior probability
of being in the cluster.
» Show the most stable members, which all have degree of membership

> 0.97.
NKO KAP HAW
NGR TAK OJA *kou2 ‘Uncastrated plg’
sk ece ok pen Mas]  *efe ‘Refuse of grated coconut or kava’
REN PIL TIK ANU @ roc| 1o Flikuy ‘Short, of a woman's skirt’
wra oo mae| ) () 88| rar T *mapa ‘A kind of tree (Diospyros or Maba sp.)’
WUV WFU . NIU | MIA MVA *kea3 ‘Breadfruit’

MAO es  *faugigo  ‘Hibiscus sp.

*kitagy, ‘Relapse following an illness’
*kakas ‘Deceive, cheat’

341 etyma, 103 at 90%

With ETYMDIST, it is possible to list the best (most probable) members of each cluster. I
have done so for the smaller Western Polynesian cluster. The glosses of these etyma do not
seem to be particularly significant, though with more investigation, a pattern may emerge.
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Most stable cluster members

» There are ~143 members attested in TON and SAM.
» Show the most stable members, which all have a degree of membership

> 0.91.
NKO KAP HAW . . 3
*fakavaka ‘A handle, provide with a handle’
NGR TAK OJA *f 1. . ¢ ’
esikiqaki (Ex)change places
SIK ECE TOK|PEN MQA *munua ‘A fish1
REN PIL TIK ANU . PUK TUA e N
. 4 *fakameomeo  ‘Displeased
MF. MAE M RAR TAH .
*fakakaukau  ‘Consider carefully’
= g = Z:: *kalia ‘Double canoe’
*sela ‘Asthma; gasp for breath’

\_ *takafalu ‘A small tree (Micromelum’
minutum)’

341 etyma, 103 at 90%

Here are etyma from the same cluster, but I have restricted the list to etyma attested in
both Tongan (TON) and Samoan (SAM). Tongan-Samoan loanwords are hard to detect because
the sound correspondences are such that it is always possible to reconstruct a protoform in a
common ancestor. A handful of loans have been identified by cognate set distribution, paral-
lel semantic shifts, or unexpected phonological correspondences (Marck, 2000, p. 69; Pawley,
2009), but this cluster provides evidence that there was a massive amount of word-borrowing

between the two societies.
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This plot is a visual experiment: it shows what happens when the clusters are collapsed
together into one map. The 21 largest clusters are given distinct colors. I use shades of blue for
clusters centered in Western Polynesia; shades of yellow for those in Eastern Polynesia; shades
of green for clusters that have high intensities in non-Polynesian languages; and shades of red
for clusters that are widespread in Polynesian languages, but not in other Oceanic languages.

The remaining clusters are lumped together as dark gray.

I do not know how informative this plot really is, but it does make the point that Pukapukan
(PUK) has a very admixed vocabulary, with as many elements from the East as are from the West.
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Appendix

STRUCTURE as applied to phonological inventories

STRUCTURE: Given a sample of N specimens, find K clusters, with admixture.

For each of K ancestral popula-
tions, what is the frequency of
each allele at each locus?

Qe (AFTHY
For each of N specimens, what
fraction of its alleles derive from
each ancestral population?

Domain: | Population genetics Phonological inventories

N specimens N languages

L genetic loci L features

M-fold ploidy

J alleles per locus Features are absent/present.
Given: | X € {1,..., J}VxExM X € {1,0}VxL
Infers: | P € (AJ-h)KxL P e [0, 1)KL

For each of K ancestral inven-
tories, What is the frequency of
each feature?

Q€ (AFTHY
For each of N languages, what

fraction of its features derive
from each ancestral inventory?




Appendix

Modeling ideals

» Responsiveness to data: avoid hard a priori assumptions.

» E.g., let the number of clusters be inferrable from the data.
g
» E.g., account for incompleteness in the data.

» Interpretability: real-world interpretations for model
elements.

» Have units whenever possible.
» Make bold predictions.
» Transparency: avoid treating models as black boxes.

» E.g., what did this ancestral population look like?
» E.g., what words did language X borrow from language Y?
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